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Introduction

The Pareto/NBD (Schmittlein et al. 1987, hereafter SMC) is a model for customer-base analysis
in a noncontractual setting. One result presented in SMC is an expression for P(X(t) = x), where
the random variable X (t) denotes the number of transactions observed in the time interval (0, ¢].
This note derives an alternative expression for this quantity, one that is simpler to evaluate.

In Section 2 we review the assumptions underlying the Pareto/NBD model. In Section 3, we
derive an expression for P(X(t) = z) conditional on the unobserved latent characteristics A and
1. We remove this conditioning in Section 4. For the sake of completeness, SMC’s derivation is
replicated in the Appendix.

2 Model Assumptions

The Pareto/NBD model is based on the following assumptions:

i

ii.

iii.

iv.

Customers go through two stages in their “lifetime” with a specific firm: they are “alive” for
some period of time, then become permanently inactive (i.e., “die”).

While alive, the number of transactions made by a customer follows a Poisson process with
transaction rate A\. Denoting the number of transactions in the time interval (0,¢] by the
random variable X (¢), it follows that

(At)xefAt

P(X(t) =x |\ alive at t) = '
z!

. 2=0,1,2,....

A customer’s unobserved lifetime of length w (after which he is viewed as being dead) is
exponentially distributed with dropout rate u:

flwlp) = pe .

Heterogeneity in transaction rates across customers follows a gamma distribution with shape
parameter r and scale parameter a:
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v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape
parameter s and scale parameter (.

leusflef,uﬁ

g(p]s, B) =

vi. The transaction rate A and the dropout rate o vary independently across customers.

3 P(X(t) =«) Conditional on A and u

Suppose we know an individual’s latent characteristics A and p. Assuming the customer was alive
at time 0, there are two ways x purchases could have occurred in the interval (0, ¢]:

i. The individual remained alive through the whole interval; this occurs with probability e=#¢.
The probability of the individual making = purchases, given he was alive during the whole
interval, is (A\t)®e~**/x!. Therefore, the probability of remaining alive through the interval
(0,¢] and making x purchases is

(At)Te=(Atmt

z!

ii. The individual died at some point w (< ¢) and made x purchases in the interval (0,w]. The
probability of this occurring is

t T, —Aw t o, —(Ap)w
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dw

which, noting that the integrand is an Erlang-(x + 1) pdf,

pam [1 ey zx: M] ,
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Combining these two scenarios gives us the following expression for the probability of observing
2 purchases in the interval (0, ¢], conditional on A and p:

A )Ee— At A® o o [+ ]’
P(X(t):xM,u):( ) - +(A+$M[1—e <A+>§%]. (3)

4 Removing the Conditioning on A and u

In reality, we never know an individual’s latent characteristics; we therefore remove the conditioning
on X\ and p by taking the expectation of (3) over the distributions of A and M:

P(X(t) =2 |05, ) = / / B =2\ mg|ra)guls B dhdp. (1)
Substituting (1)—(3) in (4) give us
P(X(t)=x|r,a,s8) =A +Ay— > ;Agi (5)
i=0



where
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i. Solving (6) is trivial:
CTlr+ax) a N7y t NTr B\

A= L(r)a! (Oz—l-t) (Oz—l-t) (ﬁ‘i‘t) (9)

ii. To solve (7), consider the transformation ¥ = M/(A + M) and Z = A + M. Using the
transformation technique (Casella and Berger 2002, Section 4.3, pp. 156-162; Mood et al.
1974, Section 6.2, p. 204ff), it follows that the joint distribution of Y and Z is

O[TBS s—1 r—1_r+s—1_—z(a—(a—pB)y)
= —— 1- L 1

Noting that the inverse of this transformation is A = (1 — y)z and p = yz, it follows that
1 e}
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which, recalling Euler’s integral for the Gaussian hypergeometric function,!

_a"BF B(r+x,s+1)
arts B(r,s)

2F1(T+s,s+1;r+s+x+1;a77ﬁ). (11)

Looking closely at (11), we see that the argument of the Gaussian hypergeometric function,
O‘Tfﬁ, is guaranteed to be bounded between 0 and 1 when a > 3 (since 8 > 0), thus ensuring
convergence of the series representation of the function. However, when o < 3 we can be
faced with the situation where O‘Tfﬁ < —1, in which case the series is divergent.

Applying the linear transformation (Abramowitz and Stegun 1972, equation 15.3.4)
2F1(a’a ba & Z) = (1 —Z)7a2F1(CL,C b G 2= 1) (12)

gives us
a3 B(r+xz,s+ 1)
gres B(r,s)

Ay = 2F1(T+s,r+x;r+s+x+1;ﬁ;—a). (13)
We see that the argument of the above Gaussian hypergeometric function is bounded between
0 and 1 when o < 3. We therefore present (11) and (13) as solutions to (7): we use (11)
when o > 8 and (13) when o < 3.

Lgb=1(1 — )e=b=1(1 — zt)~%dt, ¢ > b.
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iii. To solve (8), we also make use of the transformation Y = M/(A + M) and Z = A + M.
Given (10), it follows that

OzTﬁs 1 poo )
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which, recalling Euler’s integral for the Gaussian hypergeometric function,
B a’B® Bir+z,s+ 1) T(r+s+1i)
~ (at)rtsti B(r,s) D(r+s)
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Noting that the argument of the Gaussian hypergeometric function is only guaranteed to be
bounded between 0 and 1 when « > 3, we apply the linear transformation (12), which gives

us
Ao — o' Br+z,s+1)T(r+s+1i)
PTG+ Bl L(r+s)
><2F1(T+s+i,r+x;r+s+x+1;%). (15)

The argument of the above Gaussian hypergeometric function is bounded between 0 and 1
when o < 3. We therefore present (14) and (15) as solutions to (8), using (14) when o >
and (15) when a < .

Substituting (9), (11), (13), (14), and (15) in (5) yields the following expression for the distri-
bution of the number of transactions in the interval (0, ¢] for a randomly-chosen individual under
the Pareto/NBD model:

P(X(t):x|r,a,5,6):F(T+x)( - )T( t )x( . )S
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We note that this expression requires x+2 evaluations of the Gaussian hypergeometric function.
In contrast, SMC’s expression (see the attached appendix) requires 2(z + 1) evaluations of the
Gaussian hypergeometric function.



The equivalence of (16) and (Al), (A3), (A4) is not immediately obvious. Purely from a
logical perspective, they must be equivalent. Furthermore, equivalence is observed in numerical
investigations. However, we have yet to demonstrate direct equivalence of these two expressions
for P(X(t) =z |7, a, s, 3). Stay tuned.
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Appendix: SMC’s Derivation of P(X (t) = x| r,a,s,3)

SMC derive their expression for P(X(t) = z) by first integrating over A and p and then removing
the conditioning on w, which is the reverse of the approach used in Sections 3 and 4 above. This
gives us

P(X(t):x|r,a,s,ﬁ):F(T+x)( ) )T( t )r( - )S
N

L(r)x! \a+t/ \a+t B+t
NBD P(X(t)=z) P(Q>1)
"Tr+z)/ a \7/ w \*s/ [ 5t
— d
+/0 L(r)a! (a—i—w) (a—i—w) ﬁ(ﬁ—i-w) @
NBD P(X(w)=x) f(w)
Pr+z)/ a \"7 t o/ B \$ F(T—i—:c)
_ T S Al
L(r)a! (a—l—t) (a—i—t) (ﬁ—i-t) + L(r)a! ge (A1)
where .
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0
Making the change of variable y = a + w,
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letting z = «/y in the first integral (which implies dy = —dzaz7?) and 2z = (a+t)/y in the second
integral (which implies dy = —dz(a + t)272),

x 1
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; J 0
j=0

1
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which, recalling Euler’s integral for the Gaussian hypergeometric function,

Z aj 2F1(S+1,T+S+],T+S+]+LQT?[})
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We note that the arguments of the above Gaussian hypergeometric functions are only guaran-
teed to be bounded between 0 and 1 when o > 8. We therefore revisit (A2), applying the change
of variable y = 3+ w:

B+t
<= /ﬁ (y—B)"y " (y = B+ a) Ty

which, recalling the binomial theorem,
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letting z = 3/y in the first integral (which implies dy = —dz(2z72) and z = (8 +1)/y in the second
integral (which implies dy = —dz(3 + t)z2),

z 1
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which, recalling Euler’s integral for the Gaussian hypergeometric function,
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We note that (A3) and (A4) each require 2(z + 1) evaluations of the Gaussian hypergeometric
function.



