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Building Blocks



Problem 1:
Projecting Customer Retention Rates

(Modelling Discrete-Time Duration Data)

Background

One of the most important problems facing
marketing managers today is the issue of customer
retention. It is vitally important for firms to be able to
anticipate the number of customers who will remain
active for 1, 2,..., T periods (e.g., years or months) after
they are first acquired by the firm.

The following dataset is taken from a popular book
on data mining (Berry and Linoff, Data Mining
Techniques, Wiley 2004). It documents the “survival”
pattern over a seven-year period for a sample of
customer who were all “acquired” in the same period.
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# Customers Surviving At Least 0-7 Years

Year # Customers % Alive

0 1000 100%
1 631 63%
2 468 47%
3 382 38%
4 326 33%
5 289 29%
6 262 26%
7 241 24%

Of the 1000 initial customers, 631 renew their contracts at
the end of the first year. At the end of the second year, 468
of these 631 customers renew their contracts.
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Modelling Objective

Develop a model that enables us to project the
survival curve (and therefore retention rates)
over the next five years (i.e., out to T = 12).



Modelling Objective (I)

100 q
80

60 -

% Survived

|
|
|
|
|
|
|
|
|
|
40 !
|
|

20

|
|
|
I
0 1 2 3 4 5 6 7 8 9 10 11 12

Tenure (years)

Implied Retention Rates

The retention rate for period t (7;) is defined as the
proportion of customers who had renewed their
contract at the end of period t — 1 who then renew their
contract at the end of period t:

_ P(T>1)
CP(T>t-1)

Tt



Modelling Objective (II)
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Natural Starting Point
Project survival using simple functions of time:

- Consider linear, quadratic, and exponential
functions

- Let v = the proportion of customers surviving at
least t years

v =0.773 - 0.092t R? =0.777
v =0.930 — 0.249t + 0.022t* R* = 0.960
In(y) = —0.248 — 0.190t R? =0.915
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Survival Curve Projections
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Developing a Better Model (I)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his

contract with (constant and unobserved) probability
1-0.

ii. All customers have the same “churn probability” 0.
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Developing a Better Model (I)

More formally:

- Let the random variable T denote the duration of
the customer’s relationship with the firm.

- We assume that the random variable T has a
(shifted) geometric distribution with parameter 0:

P(T=t|0)=01-0)""", t=1,2,3,...
P(T>t|0)=(1-0)", t=1,2,3,...
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Developing a Better Model (I)

The probability of the observed pattern of contract
renewals is:
[9]369[9(1 . 9)1]163[9(1 . 9)2]86
X [0(1-0)°1°[0(1 - 0)*1P7[6(1 - 0)°]*
X [0(1-0)°17'[(1-6)771*
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Estimating Model Parameters

- Let us assume that the observed data are the
outcome of a process characterized the “coin-
flipping” model of contract renewal.

- Which value of 0 is more likely to have “generated”
the data?

0 P(data) In [P (data) ]
0.2 4.10 x 10°783 —1801.5
0.5 1.31 x 10-1011 —2327.6
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Estimating Model Parameters
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Estimating Model Parameters

We estimate the model parameters using the method of
maximum likelihood:

- The likelihood function is defined as the probability of
observing the sample data for a given set of the (unknown)
model parameters

- This probability is computed using the model and is viewed as
a function of the model parameters:

L(parameters|data) = p(data|parameters)

- For a given dataset, the maximum likelihood estimates of the
model parameters are those values that maximize L(-)
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Estimating Model Parameters

The log-likelihood function is defined as:
LL(0|data) = 369 xIn[P(T =1)] +
163 X In[P(T =2)] +
n
21 XIn[P(T =7)] +
241 x In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —1794.62, which occurs at 0 = 0.226.

19

Estimating Model Parameters

A [ B | ¢ | D | E
1 |theta 0.5000 - .
2 |LL 232759 < SIMEGET)
3 =D6*LN(B6) |
4 Year  P(T=t) #Cust. # Lost \y
5 0 1000
6 1 0.5000 631 369  -255.77
7 2 0.2500 468 163 22597
8 3 0.1250 <{=$B$1*(1-$B$1)"(A8-1)r8.83
9 4 0.0625 326 56| -155.26
10 5  0.0313 289 37 12823
11 6 0.0156 262 27 -112.29
12 7 0.0078 241 21 -101.89
12 =C12*LN(1-SUM(B6:B12))|—>  -1169.3393

20



% Survived

Estimating Model Parameters

Solver Parameters

Set Target Cell: Solve
Equal To: @ Max  OMo  Ovalueof: |0

B Changing Cells:
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Reset Al
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Survival Curve Projection
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What’s wrong with this story of customer
contract-renewal behavior?
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Developing a Better Model (II)
Consider the following story of customer behavior:

i. At the end of each period, an individual renews his

contract with (constant and unobserved) probability
1-0.

ii. “Churn probabilities” vary across customers.
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Accounting for Heterogeneity (I)
Assume two segments of customers:
Segment Size Churn Prob.

1 T 91
2 1—17 92
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Developing a Better Model (Ila)

- For a randomly-chosen individual,

P(T =t) =P(T =t|segment 1)P(segment 1)
+ P(T =t | segment 2)P(segment 2)

- More formally,

P(T = t|91,92,7T)
=01 -0 +0,(1 -6, — 1)

- We call this a “finite mixture” (of geometric
distributions) model
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(0,,0;,1r|data) = 369 X In[P(T =1)] +
163 X In[P(T =2)] +
n
21 X In[P(T =7)] +
241 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = —1680.05, which occurs at él = 0.083, ég = 0.586,
and 7t = 0.439.
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Estimating Model Parameters

A B | C D | E | F | G
1 [theta_1 0.1000
2 |theta 2 0.5000
3 |pi 0.5000
4 |LL -1694.35
5
6 Year P(T=t|seg 1) P(T=t|seg 2) P(T=t) # Cust. # Lost
7 0 1000
8 1 01000 __ 05000  0.3000 ~<—|=B8*$B$3+C8*(1-$B$3)p0)
9 2 00a00 5 - y 468 1637-288.8290
10 |=$B$1*(1-$B$1)A(A8-1)||_$B$3. FZL?,B$2)\fﬁ§L13| 382 86 -195.4803
11 4 0.0729 0.0625  0.0677 326 56 -150.7895
12 5 0.0656 0.0313  0.0484 289 37 -112.0225
13 6 0.0590 0.0156  0.0373 262 27 -88.7698
14 7 0.0531 0.0078  0.0305 241 21 -73.3055
15 -340.8870
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Estimating Model Parameters

Solver Parameters

il

Set Target Cell:

Solve

FaTo.  @max Omg  Ovakeots 0|

B Changing Cells:

Help

g0
subject ko the Constraints:
$B$1:$E43 <= 0,999 _m
$B$1:4643 == 00001
Reset Al
o)
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Estimated Distribution of Churn Probabilities
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Projecting Retention Rates
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Developing a Better Model (IIb)
Assume three segments of customers:
- For a randomly-chosen individual,
P(T =t) =P(T =t|segment 1)P(segment 1)

+ P(T =t | segment 2)P(segment 2)
+ P(T =t | segment 3)P(segment 3)

- More formally, we have a three-segment “finite
mixture” model:

3
P(T =t]01,0,,03,1m,1) = > 0;(1—0;)"'m;
i=1

where 113 = 1 — (111 + T2).
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Vodafone Italia
Churn Clusters

100
Cluster P(churn) %CB
Low risk 0.06 70
Medium risk 0.35 20 50 ~
High risk 0.65 10
0 T T T I T 1

00 02 04 06 08 1.0

P(churn)

Source: “Vodafone Achievement and Challenges in Italy” presentation (2003-09-12)
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Accounting for Heterogeneity (II)

- We move from a finite number of segments to an
infinite number of segments.

- Assume heterogeneity in 0 is captured by a beta
distribution with pdf

90(—1(1 _ 9)[3—1
B(«x, B)

fOla,B) =

35

The Beta Function
- The beta function B(«, ) is defined by the integral

1
B(e, B) = JO t*1(1-t)f1dt, x> 0,8>0,

and can be expressed in terms of gamma functions:

I'(c0T(B)

PP =T gy

- The gamma function I'(z) is defined by the integral
I'(z) = J t?7le tdt, z> 0,
0

and has the recursive property I'(z + 1) = zI['(2).
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The Beta Distribution

gx-1(1 — 9)h-1
0l B) = ,0<0<1.
f(O1x, B) B(o.B)
- The mean of the beta distribution is
10'¢
E(9) = x+ B

- The beta distribution is a flexible distribution ...

is mathematically convenient

37

General Shapes of the Beta Distribution

i
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Developing a Better Model (IIc)

For a randomly-chosen individual,

1
P(T =t | & B) =jOP<T=t|9>f<9|a,B>d9
_Blax+1,B+t-1)
a B(x, B)
1
P(T >t | B) =j P(T > t]0)£(0]cB)do
0

_ B(x,B+1)
- B(x,p)

We call this “continuous mixture” model the shifted-
beta-geometric (sBG) distribution
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Computing sBG Probabilities

We can compute sBG probabilities by using the
following forward-recursion formula from P(T = 1):

X

t=1
x+p
P(T=t) =
B+t—2
P(Ir=t-1 =2,3,...
¥a+B+t—1( t-1) =23
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(x, Bldata) = 369 X In[P(T =1)]+
163 X In[P(T =2)] +
+
21 X In[P(T =7)] +
241 X In[P(T > 7)]

The maximum value of the log-likelihood function is
LL = -1680.27, which occurs at & = 0.704 and
B =1.182.
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Estimating Model Parameters

A [ B | ¢ | D | E
1 |alpha 1.000
2 |beta 1.000
3 |LL -1741.73
4
5 Year P(T=t) # Cust. # Lost
6 0 1000 ,
7 1 0.5000 <-{=B1/(B1+B2)}69 -255.7713
8 2 __ 0.1667 468 163 -292.0568
9 =87~ $§$72+A§ r2m/n§B$1+$B§51A81 86| -213.7020
10| [EB7(SB$2+A8-2)/($ $2+A8 )| 56 _167.7610
11 5  0.0333 289 37 -125.8443
12 6  0.0238 262 27 -100.9171
13 7 0.0179 241 21  -84.5324
14 -501.1454
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Estimating Model Parameters

Solver Parameters E|
Set Target Cell: Solve
Equal To: @ Max  OMn O valueof: |0 -

= = = -Close
By Changing Cells:
oot
Subject ko the Constraints:
$B41: 4642 >= 0.00001
43

Estimated Distribution of Churn Probabilities
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Projecting Retention Rates
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A Further Test of the sBG Model

- The dataset we have been analyzing is for a
“regular” segment of customers.

- We also have a dataset for a “high end” customer
segment.

- Fitting the sBG model to the data on contract
renewals for this segment yields & = 0.668 and

—

B =3.806 (= E(0) = 0.149).

% Survived
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Survival Curve Projections
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Projecting Retention Rates
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Concepts and Tools Introduced
- Probability models

- Discrete and continuous mixture models

- Maximum-likelihood estimation of model
parameters

- Modelling discrete-time (single-event) duration data

- Models of contract renewal behavior
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Further Reading

Buchanan, Bruce and Donald G. Morrison (1988), “A Stochastic
Model of List Falloff with Implications for Repeat Mailings,”
Journal of Direct Marketing, 2 (Summer), 7-15.

Fader, Peter S. and Bruce G.S. Hardie (2007), “How to Project
Customer Retention,” Journal of Interactive Marketing, 21
(Winter), 76-90.

Fader, Peter S. and Bruce G.S. Hardie (2007), “How Not to
Project Customer Retention.”
<http://brucehardie.com/notes/016/>

Weinberg, Clarice Ring and Beth C. Gladen (1986), “The
Beta-Geometric Distribution Applied to Comparative
Fecundability Studies,” Biometrics, 42 (September), 547-560.
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Introduction to Probability Models
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The Logic of Probability Models

- Many researchers attempt to describe/predict
behavior using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random”

(probabilistic, stochastic).

- We propose a model of individual-level behavior
which is “summed” across individuals (taking
individual differences into account) to obtain a
model of aggregate behavior.
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Uses of Probability Models

- Understanding market-level behavior patterns

- Prediction

- To settings (e.g., time periods) beyond the
observation period

- Conditional on past behavior
- Profiling behavioral propensities of individuals

- Benchmarks/norms
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(iii)

(iv)

(V)

Building a Probability Model

Determine the marketing decision problem/
information needed.

Identify the observable individual-level behavior
of interest.

- We denote this by x.
Select a probability distribution that
characterizes this individual-level behavior.

- This is denoted by f(x|0).

- We view the parameters of this distribution
as individual-level latent characteristics.
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Building a Probability Model

Specify a distribution to characterize the
distribution of the latent characteristic
variable(s) across the population.

- We denote this by g(0).
- This is often called the mixing distribution.

Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf(xw)g(e)de
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Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.
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Outline

Problem 1: Projecting Customer Retention Rates
(Modelling Discrete-Time Duration Data)

Problem 2: Predicting New Product Trial
(Modelling Continuous-Time Duration Data)

Problem 3: Estimating Billboard Exposures
(Modelling Count Data)

Problem 4: Test/Roll Decisions in Segmentation- based
Direct Marketing

(Modelling “Choice” Data)

Problem 5: Characterizing the Purchasing of Hard-Candy
(Introduction to Finite Mixture Models)

Problem 6: Who is Visiting khakichinos.com?
(Incorporating Covariates in Count Models)
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Problem 2:
Predicting New Product Trial

(Modelling Continuous-Time Duration Data)
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Background

Ace Snackfoods, Inc. has developed a new shelf-stable juice
product called Kiwi Bubbles. Before deciding whether or not to
“go national” with the new product, the marketing manager for
Kiwi Bubbles has decided to commission a year-long test market
using IRI’s BehaviorScan service, with a view to getting a clearer
picture of the product’s potential.

The product has now been under test for 24 weeks. On hand
is a dataset documenting the number of households that have
made a trial purchase by the end of each week. (The total size of
the panel is 1499 households.)

The marketing manager for Kiwi Bubbles would like a forecast
of the product’s year-end performance in the test market. First,
she wants a forecast of the percentage of households that will
have made a trial purchase by week 52.
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Cum. % Households Trying

Kiwi Bubbles Cumulative Trial

Week # Households

Week # Households

—_

8
14
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32
40
47
50
52
57
60
65
67
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13
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16
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19
20
21
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23
24

68
72
75
81
90
94
96
96
96
97
97
101
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Kiwi Bubbles Cumulative Trial

Week
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Developing a Model of Trial Purchasing

- Start at the individual-level then aggregate.

Q: What is the individual-level behavior of
interest?

A: Time (since new product launch) of trial
purchase.

- We don’t know exactly what is driving the behavior
= treat it as a random variable.

63

The Individual-Level Model

- Let T denote the random variable of interest, and t
denote a particular realization.

- Assume time-to-trial is characterized by the
exponential distribution with parameter A (which
represents an individual’s trial rate).

- The probability that an individual has tried by time
t is given by:

F(t|A\) =P(T<t|A)=1-e,
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Distribution of Trial Rates
Assume trial rates are distributed across the
population according to a gamma distribution:

.U 1 e—(x/\
A —
gAlr, o) Tr)

where 7 is the “shape” parameter and « is the
“scale” parameter.

The gamma distribution is a flexible (unimodal)
distribution ...and is mathematically convenient.
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Illustrative Gamma Density Functions
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Market-Level Model

The cumulative distribution of time-to-trial at the
market-level is given by:

P(T<t|r,x) = JOOP(T <tlAD)gA|r,a)dA
0

”
(G5
X+t

We call this the “exponential-gamma” model.
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(r,x|data) =8 xXIn[P(0O<T <1)] +
6xXIn[P(1<T<2)] +
+
4XIn[P(23 < T <24)]+
(1499 — 101) X In[P(T > 24)]

The maximum value of the log-likelihood function is
LL = —681.4, which occurs at ¥ = 0.050 and & = 7.973.
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Estimating Model Parameters

A | B | C D | E | F

1 [Product:  Kiwi Bubbles r 1.000
2 [Panelists: 1499 alpha 1.000
3 |=SUM(F6:F30) | LL -4909.5
4 Cum_Trl

5 |Week # HHs Incr_Trl P(T <=t) P(try week t)

6 | [=1-(F$2/(F$2+A6))"F$1] 2 0.50000 0.50000  -5.545
7 P S 6 0.66667 _ 0.16667 -10.751
8 3 16 2 om” 0.08333  -4.970
9 4 32 16 Ooowwo—  0.05000 / -47.932
10 5 40 8 0.83333 |=C8*LN(E8)|/ -27.210
11 6 47 7 0.85714 0.02381 -26.164
12 7 50 3 0.87500 0.01786  -12.076
13 8 52 2 0.88889 0.01389  -8.553
14 9 57 5 0.90000 0.01111  -22.499
15 10 60 3 0.90909 0.00909  -14.101
29~ o4 ~ 1017 R . Y. oy S— Y 167 -25.588
30 |=(B2-B29)"LN(1-D29) | = 4499 988

gA)
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Estimated Distribution of A
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Cum. # Households Trying

Forecasting Trial

- F(t) represents the probability that a randomly
chosen household has made a trial purchase by time
t, where t = 0 corresponds to the launch of the new
product.

- Let T(t) = cumulative # households that have made
a trial purchase by time t:

E[T(t)] = N x F(t)

:N{l_ (ait)r} '

where N is the panel size.

- Use projection factors for market-level estimates.
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Cumulative Trial Forecast
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Further Model Extensions
- Add a “never triers” parameter.
- Incorporate the effects of marketing covariates.

- Model repeat sales using a “depth of repeat”
formulation, where transitions from one repeat
class to the next are modeled using an “exponential-
gamma”-type model.
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Concepts and Tools Introduced

- Modelling continuous-time (single-event) duration
data

- Models of new product trial
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Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Robert Zeithammer
(2003), “Forecasting New Product Trial in a Controlled Test
Market Environment,” Journal of Forecasting, 22 (August),
391-410.

Hardie, Bruce G.S., Peter S. Fader, and Michael Wisniewski
(1998), “An Empirical Comparison of New Product Trial
Forecasting Models,” Journal of Forecasting, 17 (June-July),
209-229.

Kalbfleisch, John D. and Ross L. Prentice (2002), The Statistical
Analysis of Failure Time Data, 2nd edn., New York: Wiley.

Lawless, J.F. (1982), Statistical Models and Methods for
Lifetime Data, New York: Wiley.
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Problem 3:
Estimating Billboard Exposures

(Modelling Count Data)
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Background

One advertising medium at the marketer’s disposal is the
outdoor billboard. The unit of purchase for this medium is
usually a “monthly showing,” which comprises a specific set of
billboards carrying the advertiser’s message in a given market.

The effectiveness of a monthly showing is evaluated in terms
of three measures: reach, (average) frequency, and gross rating
points (GRPs). These measures are determined using data
collected from a sample of people in the market.

Respondents record their daily travel on maps. From each
respondent’s travel map, the total frequency of exposure to the
showing over the survey period is counted. An “exposure” is
deemed to occur each time the respondent travels by a billboard
in the showing, on the street or road closest to that billboard,
going towards the billboard’s face.

77

Background

The standard approach to data collection requires each
respondent to fill out daily travel maps for an entire month. The
problem with this is that it is difficult and expensive to get a high
proportion of respondents to do this accurately.

B&P Research is interested in developing a means by which it
can generate effectiveness measures for a monthly showing from
a survey in which respondents fill out travel maps for only one
week.

Data have been collected from a sample of 250 residents who
completed daily travel maps for one week. The sampling process
is such that approximately one quarter of the respondents fill out
travel maps during each of the four weeks in the target month.
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Effectiveness Measures

The effectiveness of a monthly showing is evaluated in
terms of three measures:

- Reach: the proportion of the population exposed to
the billboard message at least once in the month.

- Average Frequency: the average number of
exposures (per month) among those people reached.

- Gross Rating Points (GRPs): the mean number of
exposures per 100 people.
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Distribution of Billboard Exposures (1 week)

# Exposures  # People # Exposures  # People
0 48 12 5
1 37 13 3
2 30 14 3
3 24 15 2
4 20 16 2
5 16 17 2
6 13 18 1
7 11 19 1
8 9 20 2
9 7 21 1

10 6 22 1
11 5 23 1

Average # Exposures = 4.456
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Modelling Objective

Develop a model that enables us to estimate a
billboard showing’s reach, average frequency,
and GRPs for the month using the one-week
data.

81

Modelling Issues
- Modelling the exposures to showing in a week.

- Estimating summary statistics of the exposure
distribution for a longer period of time (i.e., one
month).
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Model Development (I)

- Let the random variable X denote the number of
exposures to the showing in a week.

- At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter A:

AXe=A

P(X=x]|A) = por

- All individuals are assumed to have the same
exposure rate.

83

Estimating Model Parameters
The log-likelihood function is defined as:
LL(A|data) =48 X In[P(X = 0)]

37 XIn[P(X =1)]
30 X In[P(X = 2)]

+ o+ o+ +

1 X In[P(X = 23)]

The maximum value of the log-likelihood function is
LL = —929.0, which occurs at A = 4.456.
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# People

Estimating Model Parameters

50 7

40 A

30 o

20 H

A | B C D
1 |lambda 3.000 .
2 |LL -1005.8 < =SUM(D5:D28)]|
3
4 X f_x P(X=x)
5 0 . 0.04979  -144.00
6 =POISSE)N($ FALSE)pS 7995
7 e o — =04 -44.88
8 3 24 022404  -35.90
9 4 |=B9*LN(C9) > -35.67
10 5 16] 0.10082  -36.71
11 6 13 0.05041 -38.84
12 7 11 0.02160  -42.18
13 8 9 000810  -43.34
4y 3 ____7_000270 _ -41.40]
27 22 1 0.00000  -27.30
28 23 1_0.00000  -29.34
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Fit of the Poisson Model

6 8 10

#
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12 14

Packs

m  Actual
O Poisson

16 18 20 22



Model Development (II)

- Let the random variable X denote the number of
exposures to the showing in a week.

- At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter A:

AXe—A

P(X =x]|A) = <

- Exposure rates (A) are distributed across the
population according to a gamma distribution:
.U 1 e—a)\
I'(r)

gAlr,x) =

87

Model Development (II)

The distribution of exposures at the population- level is
given by:

o

P(X:x|r,o<):J P(X=x|A)gA|r,x)dA
0

_TI(r +x) ( X )T( 1 )x

C T(r)x! \x+1 x+ 1
This is called the Negative Binomial Distribution, or
NBD model.
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Mean of the NBD

We can derive an expression for the mean of the NBD by
conditioning:

E(X) = E[E(X|A)]

= JOOE(XIA)g(?\IT, o) dA
0
.

X

89

Computing NBD Probabilities

- Note that

P(X =x) _r+x-—-1
PX=x-1) x(x+1)

- We can therefore compute NBD probabilities using
the following forward recursion formula:

_ x \"
(cx+1>
r+x-—1

L x(x+1)

o
Il
o

P(X =x) =1

XP(X=x-1) x=>1
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Estimating Model Parameters

The log-likelihood function is defined as:

LL(r,x|data) =48 X In[P(X = 0)]
37 XIn[P(X =1)]
30 X In[P(X = 2)]

+ 4+ + +

1 xXIn[P(X =23)]
The maximum value of the log-likelihood function is

LL = —649.7, which occurs at ¥ = 0.969 and & = 0.218.
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Estimating Model Parameters

0.00000 -15.94
0.00000 -16.64

A | B | C D
1 r 1.000
2 |alpha 1.000
3 |LL -945.5 I=(BZ/(B2+1))/\B1 |:
2 v
5 X f_x P(X=x)
6 0 48 0.50000 -33.27
7 1 37_ 0.25000 -51.29
8 r n Qf( N 420N _6238
9 || =C6*($B$1+A7-1)/(A7*($BS2+1)) |7-66.54
10 4 20 0.03125 -69.31
11 5 16 0.01563 -66.54
12 6 13 0.00781 -63.08
13 7 11 0.00391 -61.00
14 8 9 0.00195 -56.14
15 9 7 0.00098 -48.52
28
29

NN
W N
—_ -
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Estimated Distribution of A
0.5 -+

0.4
0.3
gA)

0.2

0.1 -

00 T T T T 1

NBD for a Non-Unit Time Period

- Let X(t) be the number of exposures occuring in an
observation period of length ¢ time units.

- If, for a unit time period, the distribution of
exposures at the individual-level is distributed
Poisson with rate parameter A, then X (f) has a
Poisson distribution with rate parameter At:

(At)xe—i\t

P(X(t) =x|A) = o
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NBD for a Non-Unit Time Period

- The distribution of exposures at the population-
level is given by:

PX(t) =x|r,x) = J:P(X(t) =x|A)gA|lr,x)dA
CTr+x)( a« \'( t \*
- T(r)x! (a+t) <o<+t>

- The mean of this distribution is given by

E[X(D)] = %t
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Exposure Distributions: 1 week vs. 4 week

90 -+
= ] week

O 4 week

60 -

# People

30 ~

0 2 4 6 8 10 12 14 16 18 20+

# Exposures
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Effectiveness of Monthly Showing
- For t = 4, we have:

- P(X(t) =0) = 0.056, and

- E[X(t)] = 17.82

- It follows that:

- Reach=1-P(X(t) =0)

=94.4%
- Frequency = E[X(t)]/(1 — P(X(t) = 0))
=18.9
- GRPs=100x E[X(t)]
=1782
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Concepts and Tools Introduced

- Counting processes

- The NBD model

- Extrapolating an observed histogram over time

- Using models to estimate “exposure distributions’
for media vehicles
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Further Reading

Ehrenberg, A.S. C. (1988), Repeat-Buying, 2nd edn., London:
Charles Griffin & Company, Ltd. (Available online at
<http://www.empgens.com/A/rb/rb.html>.)

Greene, Jerome D. (1982), Consumer Behavior Models for
Non-Statisticians, New York: Praeger.

Morrison, Donald G. and David C. Schmittlein (1988),
“Generalizing the NBD Model for Customer Purchases: What
Are the Implications and Is It Worth the Effort?” journal of
Business and Economic Statistics, 6 (April), 145-159.
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Problem 4:

Test/Roll Decisions in
Segmentation-based Direct Marketing

(Modelling “Choice” Data)

100



The “Segmentation” Approach

i. Divide the customer list into a set of (homogeneous)
segments.

ii. Test customer response by mailing to a random
sample of each segment.

iii. Rollout to segments with a response rate (RR) above
some cut-off point,

cost of each mailing

e.g., RR > : .
unit margin

101

Ben’s Knick Knacks, Inc.

- A consumer durable product (unit margin =
$161.50, mailing cost per 10,000 = $3343)

- 126 segments formed from customer database on
the basis of past purchase history information

- Test mailing to 3.24% of database
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Ben’s Knick Knacks, Inc.
Standard approach:

- Rollout to all segments with

3,343/10,000
Test RR > 16150 = 0.00207

- 51 segments pass this hurdle

103

Test vs. Actual Response Rate

Rollout RR (%)

Test RR (%)
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Modelling Objective

Develop a model that leverages the whole data
set to make better informed decisions.

105

Model Development

i. Assuming all members of segment s have the same
(unknown) response probability p;, Xs has a
binomial distribution:

m _
P(X; :Xs|m55p5) = (x5>19§“(1—]95)m5 xS
s

with E(XslmS; ps) = M;Ps.

ii. Heterogeneity in p; is captured using a beta
distribution:
Pf‘_l(l - ’—’73)3_1
B(w, B)

g(pS|(X55) =
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The Beta Binomial Model

The aggregate distribution of responses to a mailing of
size m; is given by

P(Xs = X5|m5 O(,B)

1
= JO P(Xs = xslmg, ps) g(ps | &, B) dps

ms\B(x + x5, B+ m;s — X5)
X B(x, B) '

107

Estimating Model Parameters
The log-likelihood function is defined as:

126
LL(x, Bldata) = > In[P(Xs = xs|ms, &, B)]
s=1
126

_ mg! Mo+ x)I'(B+ms —x5) T(x+ B)
_Szlln[(ms—xs)!xs!\ ['(x+ B +my) “F((x)F(B)J
B(o<+xS,BY+mS—xS) 1/B(Y(x,B)

The maximum value of the log-likelihood function is
LL = —-200.5, which occurs at & = 0.439 and 8 = 95.411.
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Estimating Model Parameters

A B | ¢ | b | E
1 |alpha 1.000 B(alpha,beta) 1.000
2 |beta 1.000 \
3 JLL -718.9 <—{=SUM(E6:E131)|
4
5 | Segment m_s Xx_s| P(X=x|m)
6 1 34 Q. 0.02857  -3.555
7 oo . . -4.635
5 | =COMBIN(B6,C6)"EXP(GAMMALN(BS1 |, "o 0
5 +C6)+GAMMALN(B$2+B6-C6)- L o84
0 GAMMALN(B$1+B$2+B6))/E$1 135
11 6 144 7 0.00690  -4.977
12 7 1235 80 -7 7120
13 8 573 34[=INOTD [ ¢ 353
4] ___3__108 24 000092 _ -6.988
130 125 383 0 0.00260  -5.951
131 126 404 0 0.00247  -6.004
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Estimated Distribution of p

20

gp) 10 A

0 T T T T T T T T T 1
0.0 0.1 02 03 04 05 06 07 08 09 1.0

p

& = 0.439, 8 = 95.411, p = 0.0046
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Applying the Model

What is our best guess of ps given a response of
X to a test mailing of size m;?

Intuitively, we would expect

X X
E(vslxs,ms)zwa +(1-w)=

+ B mg

111

Bayes’ Theorem

- The prior distribution g(p) captures the possible
values p can take on, prior to collecting any
information about the specific individual.

- The posterior distribution g(p|x) is the conditional
distribution of p, given the observed data x. It
represents our updated opinion about the possible
values p can take on, now that we have some
information x about the specific individual.

- According to Bayes’ theorem:

f(xIp)g(p)
[ fixIlp)g(p)dp

g(plx) =
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Bayes’ Theorem

For the beta-binomial model, we have:

binomial beta

’ % N —P
P(Xs = xslms, ps) g(ps)

gpslXs = x5, my) = 1
JO P(Xs = xslms, ps) g(ps) dps

-
beta-binomial

1 x+x5—1 B+ms—xs—1
= S 1 _ s s
B(x + x5, B+ mg “x)Ps (1=ps)

which is a beta distribution with parameters « + x and
3 + mS - x_g.
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Distribution of p
150 1,

—— prior (& = 0.439, 8 = 95.411)

— — posterior with x; = 80, ms = 1,235

1004t e posterior with x; = 0,ms = 171
g(p)
. ~ p = 0.0604
50 4 /N
'.‘ p = 0.0046 / \
| p =0.0016 / \
/ \
N
0 < . .
0 0.1 1
p
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Applying the Model

Recall that the mean of the beta distribution is
o/(x + B). Therefore

X+ X
X+ B+ mg

E(ps|Xs = X, M) =

which can be written as
x+ B X N My X
x+pB+ms) x+ B x+ B +mg) m;

- a weighted average of the test RR (x;/m;) and the
population mean (x/(x + B)).

- “Regressing the test RR to the mean”

115

Model-Based Decision Rule

- Rollout to segments with:

3,343/10,000

1615 = 0.00207

E(ps|Xs = x5, mg) >

- 66 segments pass this hurdle

- To test this model, we compare model predictions
with managers’ actions. (We also examine the
performance of the “standard” approach.)
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Results

Standard Manager Model

# Segments (Rule) 51 66
# Segments (Act.) 46 71 53
Contacts 682,392 858,728 732,675
Responses 4,463 4,804 4,582
Profit $492,651 $488,773 $495,060

Use of model results in a profit increase of $6,287;
126,053 fewer contacts, saved for another offering.

117

Concepts and Tools Introduced
- “Choice” processes
- The Beta Binomial model

- “Regression-to-the-mean” and the use of models to
capture such an effect

- Bayes’ theorem (and “empirical Bayes” methods)

- Using “empirical Bayes” methods in the
development of targeted marketing campaigns
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Further Reading

Colombo, Richard and Donald G. Morrison (1988),
“Blacklisting Social Science Departments with Poor Ph.D.
Submission Rates,” Management Science, 34 (June), 696-706.

Morrison, Donald G. and Manohar U. Kalwani (1993), “The
Best NFL Field Goal Kickers: Are They Lucky or Good?”
Chance, 6 (August), 30-37.

Morwitz, Vicki G. and David C. Schmittlein (1998), “Testing
New Direct Marketing Offerings: The Interplay of Management
Judgment and Statistical Models,” Management Science, 44
(May), 610-628.
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Bayes’ Theorem and the NBD Model
Recall:

P(szlr,(x)=JOOP(X=x|A)g(A|1f,(x)d2\
0
_T(r+x) ox \" 1 \*
- T(r)x! ((x+1) ((x+1)

The mean of the NBD is E(X) = r/«.
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Bayes’ Theorem and the NBD Model
Applying Bayes’ theorem:

P(X=x|A) gQAlr,x)

—
)\Xe*)\ o(rArflef(x)\
x! I'(r)

gGA|r, o, X =x) =

F(1’+x)( x >T< 1 >x
I'r)x! \a+1 «+1
P(X:;I”r,(x)
(O( + 1)r+x)\r+x—le—2\(o<+1)
B T'(r +x)

Expected behavior in a non-overlapping period:

E(Y|X=x)=< X >Z+< L )x

x+1/) x x+1
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Bayes’ Theorem and the EG Model
Recall:

P(T=<t|r,x) = JOOP(T <tlA)gA|r,x) dA
0

- ()
X+t

Applying Bayes’ theorem:

B _ASO(TAT—le—(X?\/< B )T
gAlr,, T >s)=¢e Tr) Nt

B (o(_I_S)rAr—le—?\(ours)
B T'(r)
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Bayes’ Theorem and the EG Model

The predictive distribution for the EG model is:
F(t|r,x, T > s) =J F(t|IAT>s)gA|rv,, T >5s)dA
0

dA

o IOO e—/\(t—s) (O( + S)rAr—le—A(ours)
B 0 I'(r)

-
:1_((x+5> .
X+t
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Problem 5:
Characterizing the Purchasing of Hard-Candy

(Introduction to Finite Mixture Models)
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Distribution of Hard-Candy Purchases

# Packs # People # Packs # People
0 102 11 10
1 54 12 10
2 49 13 3
3 62 14 3
4 44 15 5
) 25 16 5
6 26 17 4
7 15 18 1
8 15 19 2
9 10 20 1
10 10
Source: Dillon and Kumar (1994)
125
A B C D [ E [ F [T G [ H | J
L1 ]r 0.998
| 2 |alpha 0.250
| 3L -1140.02
| 4|
5 # Packs Observed P(X=x) LL Expected # Packs Observed Expected (O-E)*2/E
1 6| 0 102] 0.20073 -163.79 915 0 102 91.5 1.20
7 1 54 0.16021 -98.89 73.1 1 54 73.1 4.97
| 8] 2 49 0.12802 -100.72 58.4 2 49 |=(He6-16)2/16| 1.51
| 9] 3 62 0.10234 -141.32 46.7 3 62 6.7 5.04
110 4 44 0.08183 -110.14 37.3 4 44 37.3 1.20
111 5 25 006543  -68.17 20.8 5 25 20.8 0.78
112 6 26 005233  -76.71 23.9 6 26 23.9 0.19
[13] 7 15 0.04185  -47.60 19.1 7 15 19.1 0.87
[ 14 8 15 0.03347  -50.96 15.3 8 15 15.3 0.00
115 | 9 10 0.02677  -36.20 12.2 9 10 12.2 0.40
116 | 10 10 0.02141 -38.44 9.8 10 10 9.8 0.01
[17] 1 10 0.01713  -40.67 7.8 11 10 7.8 0.61
1 18] 12 10 0.01370  -42.90 6.2 12 10 6.2 225
119 13 3| 0.01096 -13.54 5.0 13 3 5.0 0.80
[ 20] 14 3 000876  -14.21 4.0 14 3 4.0 0.25
[ 21| 15 5 0.00701 -24.80 3.2 15+ 18 11.8 3.27
122 16 5 0.00561 -25.92 2.6 23.35
[ 23] 17 4 000449  -21.63 2.0
| 24 | 18 1 0.00359 5.63 1.6 # params 2
25 19 2 0.00287  -11.71 1.3 — df 13
[ 26 20 1 0.00230 6.08 1.0 =CHIDIST(J22,J25)
27 456 p-value 0.038
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Fit of the NBD

120 7

= Actual
90 O NBD

60 -

# People

30

0 2 4 6 8 10 12 14 16 18 20

# Packs
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The Zero-Inflated NBD Model

Because of the “excessive” number of zeros, let us
consider the zero-inflated NBD (ZNBD) model:

- a proportion 1t of the population never buy
hard-candy

- the visiting behavior of the “ever buyers” can be
characterized by the NBD model

P(X =x)=0x_omm+ (1 —17)
><F(1f+x) ( X >V< 1 )x
'r)x! \x+1 x+1
This is sometimes called the “NBD with hard-core
non-buyers” model.
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Fitting the ZNBD

0 2 4 6 8 10 12 14 16 18 20

# Packs

130

A [ B [ ¢ [T o [ E [ F T G [ H T [ 0 T K
1 ]r 1.504
| 2 |alpha 0.334
[ 3 |pi 0.113
4| -1136.17
15|
16| P(X=x)
7 # Packs Observed NBD ZNBD LL Expected # Packs = Observed Expected (O-E)"2/E
8] 0 102] 0.12468  0.22368 _ -152.75 102.0 0 102 102.0 0.00
9 1 54/ 0.14054] 0.12465] ~>442 44 A8 1 54 56.8 0.14
[10] 2 49 013188  0.11{=(A8=0)"B$3+(1-B$3)"C8 2 49 53.3 0.35
[11] 3 62/ 0.11545 0.10239] -141.29 46.7 3 62 46.7 5.02
[12] 4 44] 0.09743] 0.08641] -107.74 39.4 4 44 39.4 0.54
113] 5 25/ 0.08039] 0.07130] -66.02 325 5 25 325 1.74
[ 14] 6 26/ 0.06531 0.05793]  -74.06 26.4 6 26 26.4 0.01
115 7 15/ 0.05248 0.04654)  -46.01 21.2 7 15 21.2 1.82
116 8 15 0.04181 0.03708  -49.42 16.9 8 15 16.9 0.22
117 9 10, 0.03309 0.02935  -35.28 13.4 9 10 13.4 0.86
18] 10 10 0.02605 0.02311  -37.68 10.5 10 10 10.5 0.03
[19] 11 10| 0.02042] 0.01811  -40.11 8.3 1 10 8.3 0.37
Ed 12 10, 0.01595 0.01415  -42.58 6.5 12 10 6.5 1.95
[21] 13 3 001242 001101  -13.53 5.0 13 3 5.0 0.81
[22] 14 3 0.00964 0.00855  -14.28 3.9 14 3 3.9 0.21
23] 15 5 0.00747 0.00663  -25.08 3.0 15+ 18 10.4 5.48
| 24] 16 5 000578 0.00512  -26.37 23 19.54
E 17 4 000446 0.00395 -22.13 1.8
|26 18 1 0.00343 0.00305 -5.79 1.4 # params 3
[ 27] 19 2 0.00264 000234  -12.11 1.1 df 12
E 20 1 0.00203 0.00180 -6.32 0.8
29 456 p-value 0.076
129
L]
Fit of the ZNBD
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What is Wrong With the NBD Model?

The assumptions underlying the model could be wrong
on two accounts:

i. at the individual-level, the number of purchases is
not Poisson distributed

ii. purchase rates (A) are not gamma-distributed

131

Relaxing the Gamma Assumption

- Replace the continuous distribution with a discrete
distribution by allowing for multiple (discrete)
segments each with a different (latent) buying rate:

S S
P(X=x)=> mP(X=x[A;), > m=1
s=1

s=1

- This is called a finite mixture model.
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Fitting the One-Segment Model

A B c | D

1 [lambda 3.991
2 |LL -1545.00
3 |
4 # Packs Observed P(X=x) LL
5 0 102 0.01848  -407.11
6 1 54 0.07375 -140.78
7 2 49 0.14717 -93.89
8 3 62 0.19579 -101.10
9 4 44  0.19536 -71.85
10 ___5___.25 015595 _ 4646
25 20 1 0.00000 -18.64
26 456
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Fitting the Two-Segment Model

A B [ ¢ | D E F

1 {lambda_1 1.802

2 [lambda_2 9.121

3 |pi 0.701

4 |LL -1188.83

5

6 # Packs Observed Seg1 Seg?2 P(X=x) LL
7 0 102, 0.16494" 0.00011 0.11564  -220.04
8 |:PO|SSON(A7,B$1,FALSE) 25/ 4 0.00100 f 0.20864 -84.63
9 ‘ aer—rron785 ) 0.00455 | 0.189(=B7*LN(E7)
10 |=POISSON(A7,B$2,FALSE)B_ 12g2 | n11a6T—37
11 4 44 0.07249 O.E:B$3*C7+(1'B$3)*D7|23.61
12| ___5____2 002613 005753 003562 _ 8344
27 20 1 0.00000 0.00071 0.00021 -8.45
28 456
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Fitting the Two-Segment Model

]

Set Target Cell:
Equal To: ®iMax  (OMn (Ovalueof: |0
By Changing Cells:

o1 o8
Subject ko the Constrainks:

$B41:$643 == 0.0001 -

I et [ add |

Reset Al

135

Estimating the Mixing Proportions

- For more than two segments, satisfying the
constraints that O < 11y < 1 while ensuring that
Zle 1T, = 1 can be computationally difficult.

- We therefore reparameterize the mixing
proportions:

exp(0s)

¢ = , =0
S5 _exp(0y)
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Fitting the Three-Segment Model

A B C D E F | G
1 |lambda_1 3.483
2 (lambda_2 11.216
3 |lambda_3 0.291
4 |theta_1 0.674 1.963 ~<—|=EXP(B4)
5 |theta_2 -0.430 0.650
6 |theta_3 0 1.000
7 |LL -1132.04 [=C4/SUM(C4:Cé)
8
9 0.543 © 0.180 0.277
10| # Packs| Observed Seg1 Seg2 Seg3 P(X=x) LL
11 0 102 0.03071) 0.00001 0.74786 0.22367 -152.76
12 1 54 0.10696/ 0.00015 0.21728/ 0.11827 -115.28
13 2 49 [=SUMPRODUCT(C$9:E$9,C11:E11)1009  -108.12
14 3 62 0.21629] 0.00317] 0.00306/ 0.11892 -132.02
15 4 44 0.18835 0.00887 0.00022 0.10399 -99.59
16 ___5___.25_013122| 001991 _0.00001__0.07487| _-64.80]
31 20 1 0.00000 0.00549 0.00000 0.00099 -6.92
32 456
137
Fitting the Three-Segment Model
Solver Parameters g
Set Target Cell: HEL? |
Equal To: @ Max  OMn O valueof: |0 -_
By Changing Cells: Closs
sob ot
Subject ko the Constrainks:
$E41: 4643 == 0.00001
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Fitting the Four-Segment Model

A | B | ¢ | o J e T F 1T ¢ | H
| 1 [lambda_1 3.002
| 2 [lambda_2 0.205
3 |lambda_3 7.418
| 4 |lambda_4 12.873
| 5 |theta_1 1.598 4.943
6 |theta_2 0.876 2.401
| 7 |theta_3 0.398 1.489
| 8 |theta_4 0 1.000
9 |LL -1130.07
| 10 |
[ 11] 0.503 0.244 0.151 0.102
12| # Packs Observed Seg1 Seg2 Seg3 Seg4 P(X=x) LL
[ 13] 0 102] 0.04969 0.81487| 0.00060 0.00000 0.22406 -152.58
[ 14 ] 1 54 0.14917 0.16683 0.00445 0.00003 0.11641 -116.14
[ 15] 2 49 0.22390 0.01708 0.01652 0.00021 0.11925  -104.20
[ 16| 3 62 0.22404 0.00117 0.04084 0.00091 0.11919 -131.88
[ 17 ] 4 44 0.16814 0.00006 0.07574 0.00294 0.09631 -102.97
18] ___5___.25_010095 000000 011237 000756 006853 _ -6701]
33 20 1 0.00000 0.00000 0.00006 0.01647 0.00168 -6.39
34 456
139
Parameter Estimates
Segl Seg?2 Seg3 Seg 4 LL

A 3.991 —1545.00
A 1.802 9.121 —1188.83
s, 0.701  0.299
A 0.291 3.483 11.216 —1132.04
e 0.277 0.543 0.180
As  0.205 3.002 7418 12.873 —-1130.07
e, 0.244 0.503 0.151 0.102
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How Many Segments?

- Controlling for the extra parameters,isan S + 1
segment model better than an S segment model?

- We can’t use the likelihood ratio test because its

properties are violated

- It is standard practice to use “information-
theoretic” model selection criteria

- A common measure is the Bayesian information
criterion:
BIC = —2LL + p In(N)

where p is the number of parameters and N is the
sample size

- Rule: choose S to minimize BIC
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Summary of Model Fit

Model LL # params BIC x° p-value
NBD —1140.02 2 2292.29 0.04
ZNBD -1136.17 3 2290.70 0.08
Poisson —1545.00 1 3096.12 0.00
2 seg Poisson —1188.83 3 2396.03 0.00
3 seg Poisson —1132.04 5 2294.70 0.22
4 seg Poisson —1130.07 7 2303.00 0.33
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LatentGOLD Results

Seg1l Seg? Seg 3 Seg 4 LL
mean 3.991 —-1545.00
class size  1.000
mean 1.801 9.115 —1188.83
class size  0.700 0.300
mean 3.483 0.291 11.210 —-1132.04
class size 0.542 0.277  0.181
mean 2.976  0.202 7.247 12.787 —-1130.07

class size 0.500 0.243 0.156 0.106
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Fit of the Three-Segment Poisson Model
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Implied Heterogeneity Distribution

3 Seg Poisson ZNBD
1.0 4 A
g) 0.5
OO T T T T T 1 T T T T T 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
A A

71 =0.113,7 = 1.504, & = 0.334
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Classification Using Bayes Theorem

To which “segment” of the mixing distribution does
each observation x belong?

- 11, can be interpreted as the prior probability of A
- By Bayes theorem,

Z§’=1 P(X =x|As)TTs ’

Ps| X=x)=

which can be interpreted as the posterior
probability of A
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Posterior Probabilities
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Conditional Expectations

What is the expected purchase quantity over the next
month for a customer who purchased seven packs last
week?

E[X(4)] =E[X(4)|seg1]P(segl|X =7)
+ E[X(4)|seg 2] P(seg 2| X =7)
+ E[X(4)|seg 3] P(seg 3| X =7)
= (4 x 0.291) x 0.0000
+ (4 x 3.483) x 0.6575
+ (4 x11.216) x 0.3425
=24.5

.. or 13.9 with “hard assignment” to segment 2.
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Concepts and Tools Introduced
- Finite mixture models
- Discrete vs. continuous mixing distributions

- Probability models for classification
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Further Reading

Dillon, Wiliam R. and Ajith Kumar (1994), “Latent Structure
and Other Mixture Models in Marketing: An Integrative Survey
and Overview,” in Richard P. Bagozzi (ed.), Advanced Methods
of Marketing Research, Oxford: Blackwell.

McLachlan, Geoffrey and David Peel (2000), Finite Mixture
Models, New York: John Wiley & Sons.

Wedel, Michel and Wagner A. Kamakura (2000), Market
Segmentation: Conceptual and Methodological Foundations,
2nd edn., Boston, MA: Kluwer Academic Publishers.
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Problem 6:
Who is Visiting khakichinos.com?

(Incorporating Covariates in Count Models)

151

Background

Khaki Chinos, Inc. is an established clothing catalog company
with an online presence at khakichinos.com. While the company
is able to track the online purchasing behavior of its customers, it
has no real idea as to the pattern of visiting behaviors by the
broader Internet population.

In order to gain an understanding of the aggregate visiting
patterns, some Media Metrix panel data has been purchased. For
a sample of 2728 people who visited an online apparel site at
least once during the second-half of 2000, the dataset reports
how many visits each person made to the khakichinos.com web
site, along with some demographic information.

Management would like to know whether frequency of visiting
the web site is related to demographic characteristics.
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Raw Data

ID #Visits In(Income) Sex In(Age) HH Size

Number of People

1 0 11.38 1 3.87 2
2 5 9.77 1 4.04 1
3 0 11.08 0 3.33 2
4 0 10.92 1 3.95 3
5 0 10.92 1 2.83 3
6 0 10.92 0 2.94 3
7 0 11.19 0 3.66 2
8 1 11.74 0 4.08 2
9 0 10.02 0 4.25 1
153

Distribution of Visits

2000 A
1500 A
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Modelling Count Data
Recall the NBD:

- At the individual-level, Y ~ Poisson(A)

- A is distributed across the population according to a
gamma distribution with parameters » and «

P(Y =y) = rﬁ:);g) (ai 1>T ((Xil)y
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Observed vs. Unobserved Heterogeneity
Unobserved Heterogeneity:
- People differ in their mean (visiting) rate A

- To account for heterogeneity in A, we assume it is
distributed across the population according to some
(parametric) distribution

- But there is no attempt to explain how people differ in
their mean rates

Observed Heterogeneity:

- We observe how people differ on a set of observable
independent (explanatory) variables

- We explicitly link an individual’s A to her observable
characteristics
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The Poisson Regression Model

- Let the random variable Y; denote the number of
times individual i visits the site in a unit time period

- At the individual-level, Y; is assumed to be
distributed Poisson with mean A;:

AY e Ai

P(Y; = y|A;) = i

- An individual’s mean is related to her observable

characteristics through the function

Ai = Ao exp(B'x;)
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Fit of the Poisson Model
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A =0.949,LL = —6378.6
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Fitting the Poisson Regression Model

A [ B Jc] b [T E T F T 6 T H 1] I J
1 |Nambda_ 0 0.0439 LL -6291.497
2_[B.inc 0.0938  [_TRANSPOSE(B2:B5)}|
3 [B_sex 0.0043 T
4 |B_age 0.5882
5 |B_size -0.0359
6 0.0938  0.0043] 05882  -0.0359
7
8 ID Total Income Sex Age HHSize, lambda P(Y=y) In[P(Y=y)]
9 1 0 11.38 1 3.87 2 116317 0.31249  -1.163
1? g |=B$1"EXP(SUMPRODUCT(D$6:G$6,09:G9)) [, g):gégg? 8:223223
12 4 0 10.92 1 |=H9"B9*EXP(-H9)/FACT(BY)| 0.324307 -T.126
13 5 0 10.92 1 2383 3] 058338 055801  -0.583
14 6 0 10.92 0 2.94 3| 062017 053785  -0.620
15 7 0 11.19 0 3.66 2 1.00712 036527  -1.007
16 8 1 11.74 0 4.08 2 1.35220 0.34977  -1.050
17 9 0 10.02 0 4.25 1 1.31954 026726  -1.320
8] ___lo___ 0 __ 1092 __0_ _ 38 __ 3 10565 034765 1057
2735 2727 0 10.53 1 2.89 4] 056150 0.57035 0.561
2736 2728 0 11.74 1 2.83 3 0.63010 0.53254 0.630
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Poisson Regression Results

Variable Coefficient
Ao 0.0439
Income 0.0938
Sex 0.0043
Age 0.5882
HH Size —0.0359

LL —6291.5

LL poiss —6378.6

LR (df = 4) 174.2
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Comparing Expected Visit Behavior

Person A Person B
Income 59,874 98,716

Sex M F
Age 55 33
HH Size 4 2

Who is less likely to have visited the web site?

Aa = 0.0439 x exp (0.0938 x In(59,874) + 0.0043 x 0
+0.5882 x In(55) — 0.0359 x 4)
=1.127
Ap = 0.0439 x exp (0.0938 x In(98,716) + 0.0043 x 1

+0.5882 x In(33) — 0.0359 x 2)
= 0.944

161

Is B Different from 0?
Consider two models, A and B:

If we can arrive at model B by placing k
constraints on the parameters of model A, we
say that model B is nested within model A.

The Poisson model is nested within the Poisson
regression model by imposing the constraint g = 0.

We use the likelihood ratio test to determine whether
model A, which has more parameters, fits the data
better than model B.
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The Likelihood Ratio Test

- The null hypothesis is that model A is not different
from model B

- Compute the test statistic

LR = —2(LLg — LL,)

- Reject null hypothesis if LR > x5,
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Computing Standard Errors

- Excel

- indirectly via a series of likelihood ratio tests
- easily computed from the Hessian matrix

(computed using difference approximations)
- General modelling environments (e.g., MATLAB,
Gauss)

- easily computed from the Hessian matrix (as a
by-product of optimization or computed using
difference approximations)

- Advanced statistics packages (e.g., Limdep, R, S-Plus)
- they come for free
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S-Plus Poisson Regression Results

Coefficients:
Value Std. Error t value
(Intercept) -3.126238804 0.40578080 -7.7042552
Income 0.093828021 0.03436347 .7304580
Sex 0.004259338 0.04089411 0.1041553
Age 0.588249213 0.05472896 10.7484079
HH Size -0.035907406 0.01528397 -2.3493511

N
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Limdep Poisson Regression Results

fmm————— o - o - fm————— +
|[Variable | Coefficient | Standard Error |b/St.Er.|
fomm - o o R +
Constant -3.122103284 .40565119 -7.697
INCOME .9305546493E-01 .34332533E-01 2.710
SEX .4312514407E-02 .40904265E-01 .105
AGE .5893014445 .54790230E-01 10.756

HH SIZE -.3577795361E-01 .15287122E-01 -2.340
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Fit of the Poisson Regression
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The ZIP Regression Model

Because of the “excessive” number of zeros, let us
consider the zero-inflated Poisson (ZIP) regression
model:

- a proportion 1t of those people who go to online
apparel sites will never visit khakichinos.com

- the visiting behavior of the “ever visitors” can be
characterized by the Poisson regression model

P(Yi=y)=0y-0om+ (1 -1)
[7\0 eXp(B’Xi)]ye—Ao exp(B'x;)

X
y!
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Fitting the ZIP Regression Model

A [ B Jc] D ] [ F T & [ H I J

1 |lambda_0|  6.6231 LL -4297.472

2 |pi 0.7433

3 |B_inc -0.0891

4 |B_sex -0.1327

5 |B_age 0.1141

6 |B_size 0.0196

7 -0.0891 -0.1327  0.1141] 0.0196

8

9 ID Total Income Sex Age HHSize lambda P(Y=y) In[P(Y=y)]

10 1 0 11.38 1 3.87 2| 3.40193 0.75184 -0.285

11 2 5 9.77 1 4.04 1| 3.92698 / 0.03936 -3.235

12 3 0 [=IF(B10=0,B$2,0)+(1-B$2)"H10"B10*EXP(-H10)/FACT(B10)|2 -0.289

13 4 0 T10.92 T 3.95 3 3.64889 U.74996 -0.288

14 5 0 10.92 1 2.83 3 3.21182 0.75363 -0.283

15 6 0 10.92 0 2.94 3| 3.71435 0.74954 -0.288

16 7 0 11.19 0 3.66 2 3.85775 0.74871 -0.289

17 8 1 11.74 0 4.08 2 3.85266 0.02099 -3.864

18 9 0 10.02 0 4.25 1 4.48880 0.74617 -0.293

19 10 0 1092 0 __38 3 411879 074746 _ -0291)
2736] 2727] 0 | 1053 1 2.89 4~ 341119  0.75176 0.285
2737 2728 0 11.74 1 2.83 3 298515 0.75626 0.279
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ZIP Regression Results

Variable Coefficient
Ao 6.6231
Income —0.0891
Sex -0.1327
Age 0.1141
HH Size 0.0196
T 0.7433

LL —4297.5

LL poiss reg —6291.5

LR (df =1) 3988.0
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Fit of the ZIP Regression
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NBD Regression

The explanatory variables may not fully capture the
differences among individuals

To capture the remaining (unobserved) component of
differences among individuals, let Ay vary across the
population according to a gamma distribution with
parameters v and «:

I'(r+y) x " expBx) \
F(r)y! \«+exp(B'x;) « + exp(B'x;)

P(Yi=y) =

- Known as the “Negbin II” model in most textbooks

- Collapses to the NBD when g =0
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Fitting the NBD Regression Model

A B [c] b [ E [ F G [ H I J
1 0.1388 LL -2888.966
2 |alpha 8.1979
3_|B_inc 0.0734
4 |B_sex -0.0093
5 |B_age 0.9022
6 |B_size -0.0243
7 0.0734  -0.0093] 0.9022 -0.0243
8
9 ID Total Income Sex Age HHSize exp(BX) P(Y=y)| In[P(Y=y)]
10 1 0 11.38 1 3.87 2 7151161 072936  -0.316
11 2 5 9.77 1 4.04 1/ 76.02589 /0.01587  -4.143
12 3 0 [=EXP(SUMPRODUCT(D$7:G$7,010:G10))[+3-42559 /. 0.77467  -0.255
13 4 0 oo . o o-72.50603/ 0.72810  -0.317
14 5 0 10.92 1 =EXP(GAMMALN(B$1+B10)-
15 6 Y 10.92 0 |GAMMALN(B$1))/FACT(B10)*(B$2/(B$2+H10))"B$1*
16 7 0 11.19 0 (H10/(B$2+H10))"B10
17 8 1 11.74 0 — S A - —
18 9 0 10.02 0 4.25 1 94.07931 070456  -0.350
19 10 0 1092 0 __38 ___ 3 6680204 073555 _-0.307
2736|2727 0 | 1053 1 2.89 4 26.42093 0.81883 0.200
2737 2728 0 11.74 1 2.83 3| 28.08647 _ 0.81351 0.206
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NBD Regression Results

Variable Coefficient
v 0.1388
X 8.1979
Income 0.0734
Sex —0.0093
Age 0.9022
HH Size —-0.0243
LL —2889.0
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S-Plus NBD Regression Results

Coefficients:
Value Std. Error t value
(Intercept) -4.047149702 1.10159557 -3.6738979
Income 0.074549233 0.09555222 0.7801936
Sex -0.005240835 0.11592793 -0.0452077
Age 0.889862966 0.14072030 6.3236289
HH Size -0.025094493 0.04187696 -0.5992435

Theta: 0.13878
Std. Err.: 0.00726
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Limdep NBD Regression Results

Fom———— e - o +
|[Variable | Coefficient | Standard Error |b/St.Er.|
fmm - - - o +
Constant -4.077239653 1.0451741 -3.901
INCOME .7237686001E-01 .76663437E-01 .944
SEX -.9009160129E-02 .11425700 -.079
AGE .9045111135 .17741724 5.098
HH SIZE -.2406546843E-01 .38695426E-01 -.622
Overdispersion parameter
Alpha 7.206708844 .33334006 21.620

176



Number of People

Summary of Regression Results

Variable Poisson Z1P NBD
Ao 0.0439 6.6231
r 0.1388
X 8.1979
Income 0.0938 —-0.0891 0.0734
Sex 0.0043 -0.1327 -0.0093
Age 0.5882 0.1141 0.9022
HH Size -0.0359 0.0196 -0.0243
T 0.7433
LL —-6291.5 —-4297.5 -2889.0
177
Fit of the NBD Regression
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Fit of the NBD
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¥ =0.134, & = 0.141,LL = -2905.6
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Concepts and Tools Introduced
- Incorporating covariate effects in count models
- Poisson (and NBD) regression models

- The possible over-emphasis of the value of
covariates
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Further Reading

Cameron, A. Colin and Pravin K. Trivedi (1998), Regression
Analysis of Count Data, Cambridge: Cambridge University
Press.

Wedel, Michel and Wagner A. Kamakura (2000), Market
Segmentation: Conceptual and Methodological Foundations,
2nd edn., Boston, MA: Kluwer Academic Publishers.

Winkelmann, Rainer (2003), Econometric Analysis of Count
Data, 4th edn., Berlin: Springer.
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Introducing Covariates: The General Case

- Select a probability distribution that characterizes the
individual-level behavior of interest:

f(16:)

- Make the individual-level latent characteristic(s) a
function of (time-invariant) covariates:

0; = s(60,%x;)

- Specify a mixing distribution to capture the
heterogeneity in 0; not “explained” by x;

- Derive the corresponding aggregate distribution

Foyix:) = jf(ywo,xi)g(eo) 6,
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Covariates in Timing Models

- If the covariates are time-invariant, we can make A a

direct function of covariates:

F(t)=1- e—AoeXp(ﬁ'Xi)t

- If the covariates are time-varying (i.e., X;;), we

incorporate their effects via the hazard rate function
F(t) =1 — e 04®

where A(t) = 2321 eXp(ﬁlxij)

- Known as “proportional hazards regression”

Cum. # Households Trying
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Comparing EG with EG+cov

150 ‘
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Covariates in “Choice” Models
Two options for binary choice:

- The beta-logistic model

- a generalization of the beta-binomial model in
which the mean is made a function of (time-
invariant) covariates

- covariate effects not introduced at the level of
the individual

- Finite mixture of binary logits:

oy exp(Bxy)
PY =1) = exp(B'x;) + 1

with some elements of B varying across segments
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Discussion
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Recap

- The preceding five problems introduce simple
models for three behavioral processes:

- Timing — “when”

- Counting — “how many”

- “Choice” — “whether/which”

- Each of these simple models has multiple
applications.
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Further Applications: Timing Models
- Repeat purchasing of new products

- Response times:

- Coupon redemptions

- Survey response

- Direct mail (response, returns, repeat sales)

- Other durations:

- Salesforce job tenure
- Length of web site browsing session
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Further Applications: Count Models
- Repeat purchasing

- Customer concentration (“80/20” rules)

- Salesforce productivity/allocation

- Number of page views during a web site browsing
session
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Further Applications: “Choice” Models

- Brand choice

A B A A
HH #1 — >
: B :

HH #2 — -
: B A :

HH #3 — -
: i A B B B i
HH #h — —

- Media exposure

- Multibrand choice (BB — Dirichlet Multinomial)
- Taste tests (discrimination tests)

- “Click-through” behavior
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The Excel spreadsheets associated with this tutorial,
along with electronic copies of the tutorial materials,
can be found at:

http://brucehardie.com/talks.html
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Day 2
Models for Customer-Base Analysis
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Agenda

- Review of probability models

- Introduction to customer-base analysis

- The right way to think about computing CLV
- Models for contractual settings

- Models for noncontractual settings
- The Pareto/NBD model

- The BG/NBD model

- The BG/BB model

- Beyond the basic models
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Review of Probability Models
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The Logic of Probability Models

- Many researchers attempt to describe/predict
behavior using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random”
(probabilistic, stochastic).

- We propose a model of individual-level behavior
which is “summed” across heterogeneous
individuals to obtain a model of aggregate behavior.
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Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(ii) Identify the observable individual-level behavior
of interest.
- We denote this by x.
(iii) Select a probability distribution that
characterizes this individual-level behavior.
- This is denoted by f(x|0).

- We view the parameters of this distribution
as individual-level latent traits.
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Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent trait variable(s) across
the population.

- We denote this by g(0).
- This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf<x|9>g<9>d9
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Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.
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“Classes” of Models
- We focus on three fundamental behavioral
processes:
- Timing — “when”
- Counting — “how many”
- “Choice” — “whether/which”

- Our toolkit contains simple models for each
behavioral process.

- More complex behavioral phenomena can be
captured by combining models from each of these
processes.
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Individual-level Building Blocks

Count data arise from asking the question, “How
many?”. As such, they are non-negative integers with no
upper limit.

Let the random variable X be a count variable:
X is distributed Poisson with mean A if

AXe—A
x!

P(X=x|A) = , x=0,1,2,...
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Individual-level Building Blocks

Timing (or duration) data are generated by answering
“when” and “how long” questions, asked with regards to
a specific event of interest.

The models we develop for timing data are also
used to model other non-negative continuous
quantities (e.g., transaction value).

Let the random variable T be a timing variable:

T is distributed exponential with rate parameter A if

F(tIAD)=P(T<t|A)=1-e?, t>0.
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Individual-level Building Blocks

A Bernoulli trial is a probabilistic experiment in which
there are two possible outcomes, ‘success’ (or ‘1’) and
‘failure’ (or ‘0’), where p is the probability of success.

Repeated Bernoulli trials lead to the geometric
and binomial distributions.
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Individual-level Building Blocks

Let the random variable X be the number of
independent and identically distributed Bernoulli trials
required until the first success:

X is a (shifted) geometric random variable, where

P(X:x|p):p(1_p)x_1; X:]_,Z,?),...

The (shifted) geometric distribution can be used to
model either omitted-zero class count data or discrete-
time timing data.
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Individual-level Building Blocks

Let the random variable X be the total number of
successes occurring in n independent and identically
distributed Bernoulli trials:

X is distributed binomial with parameter p, where
n _
P(X:x|n!p):<x>px(1_p)nx1x20111211n

We use the binomial distribution to model repeated
choice data— answers to the question, “How many
times did a particular outcome occur in a fixed number
of events?”

204



Capturing Heterogeneity in Latent Traits

The gamma distribution:

O(rAr—le—(xA
gAlr, o) = T , A>0

- T'(+) is the gamma function
- v is the “shape” parameter and « is the “scale”

parameter

- The gamma distribution is a flexible (unimodal)
distribution ... and is mathematically convenient.
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Illustrative Gamma Density Functions
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Capturing Heterogeneity in Latent Traits
The beta distribution:
p* - p)f!
B(«x, B)

- B(«, B) is the beta function, which can be expressed
in terms of gamma functions:

_ T(oOT(B)
CT(x+p)

gploe,B) = ,0<p<1.

B(«x, B)

- The beta distribution is a flexible distribution ... and
is mathematically convenient
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Illustrative Beta Density Functions

ap)

p p
x=5,8= a=15pB=0.5
- — - x=1,8= — — — «=0.5,8=1.5
------- «=0.5B=05 smemes a=2,p=4
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The Negative Binomial Distribution (NBD)

- The individual-level behavior of interest can be
characterized by the Poisson distribution when the
mean A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

P(X=x|r,o<)=JmP(X=x|A)g(A|T,0()d/\
0
Tr+x)( &« \'( 1 \*
 T(r)x! <o<+1) <o<+1> '
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The Exponential-Gamma Model
(Pareto Distribution of the Second Kind)

- The individual-level behavior of interest can be
characterized by the exponential distribution when
the rate parameter A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

F(t|r,x) =JOOOF(t|2\)g(2\|V,0()dA
X g
:1_<(x+t) '
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The Beta-Geometric Model

- The individual-level behavior of interest can be
characterized by the (shifted) geometric distribution
when the parameter p is known.

- We do not observe an individual’s p but assume it is
distributed across the population according to a
beta distribution.

1
P(X=x|«p) =LP(X=x|v)g(v|0<,B)dv

_Bla+1,B+x—1)
- B(&, B)
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The Beta-Binomial Distribution

- The individual-level behavior of interest can be
characterized by the binomial distribution when the
parameter p is known.

- We do not observe an individual’s p but assume it is
distributed across the population according to a
beta distribution.

1
P(X = x |n, & B) =J0P<X=x|n,;o>g<p|o<,ﬁ>dv

n\B(x+x,B+n—x)
X B(x, B) '
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Integrated Models
- Counting + Timing
- catalog purchases (purchasing | “alive” & “death” process)

- “stickiness” (# visits & duration/visit)

- Counting + Counting

- purchase volume (# transactions & units/transaction)
- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)
- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2
Counting  Timing Choice

Counting

Stage 1 Timing

Choice
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Integrated Models

- The observed behavior is a function of
sub-processes that are typically unobserved:

f(x101,02) =g(fi(x1]61), f2(x21602)).

- Solving the integral
Flx) = j Fx161,02)91(01)92(02) A0, d6;

often results in an intermediate result of the form
1

= constant X J (1 — ) (u +vt)rdt
0
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The “Trick” for Integrated Models

Using Euler’s integral representation of the Gaussian
hypergeometric function, we can show that

1
J t%(1 — t)B(u + vt)Vdt
0

(B(x+ 1,8+ 1)u~Yy
XoF i (y,x+Lx+B+2,—-2), lvl<u
Blx+1,B+1)(u+v)7Y

XoF1(y,B+ L+ B+2;5), lvlzu

where »F; (a, b; c; z) is the Gaussian hypergeometric
function.
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The Gaussian Hypergeometric Function

Z T(a+ HI(b+j)z/
I'(a )F b) I'(c +j) J

°Fi(a,b;c;z) =

Easy to compute, albeit tedious, in Excel as

oFi(a,b;c;z) = > u;j
j=0

using the recursion

u; (a+j-1Mb+j-1)
Uj_1 (c+j—-1)j '

=1,2,3,...

where ug = 1.
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Customer-Base Analysis

- Faced with a customer transaction database, we may
wish to determine

- which customers are most likely to be active in
the future,

- the level of transactions we could expect in
future periods from those on the customer list,
both individually and collectively, and

- individual customer lifetime value (CLV).

- Forward-looking/predictive versus descriptive.
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Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past : Future

latent

characteristics

()

Probability modelling approach
0 = f(past) — future = f(0)
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Classifying Analysis Settings

Consider the following two statements regarding the size of

a company’s customer base:

- Based on numbers presented in a January 2006 press

release that reported Vodafone Group PIc’s third quarter

key performance indicators, we see that Vodafone UK
has 6.3 million “pay monthly” customers.

- In his “Q3 2005 Financial Results Conference Call”, the
CFO of Amazon made the comment that “[a]ctive

customer accounts, representing customers who ordered

in the past year, surpassed 52 million, up 19%”.
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Classifying Analysis Settings

- It is important to distinguish between contractual
and noncontractual settings:

- In a contractual setting, we observe the time at
customers become inactive.

- In a noncontractual setting, the time at which a
customer becomes inactive is unobserved.

- The challenge of noncontractual markets:

How do we differentiate between those customers
who have ended their relationship with the firm
versus those who are simply in the midst of a long
hiatus between transactions?
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Classifying Analysis Settings
Consider the following four specific business settings:
- Airport VIP lounges
- Electrical utilities
- Academic conferences

- Mail-order clothing companies.
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives | Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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The Right Way to Think About Computing
Customer Lifetime Value
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Calculating CLV

Customer lifetime value is the present value of the
future cash flows associated with the customer.

- A forward-looking concept

- Not to be confused with (historic) customer
profitability
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Calculating CLV
Standard classroom formula:
T Pt
LV = —_
¢ ;0 AT ay
where m = net cash flow per period (if active)
¥ = retention rate
d = discount rate

T = horizon for calculation
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Calculating E(CLV)

A more correct starting point:

E(CLV) = JOOE[v(t)]S(t)d(t)dt
0

where E[v(t)]

expected value (or net cashflow) of
the customer at time t (if active)

the probability that the customer
has remained active to at least time t

discount factor that reflects the
present value of money received at
time t

S(t)

da(t)

227

Calculating E(CLV)
- Definitional; of little use by itself.

- We must operationalize E[v (t)], S(t), and d(t) in a
specific business setting ... then solve the integral.

- Important distinctions:
- E(CLV) of an as-yet-be-acquired customer
- E(CLV) of a just-acquired customer

- E(CLV) of an existing customer (expected
residual lifetime value)
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Models for Contractual Settings
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives | Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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SUNIL GUPTA, DONALD R. LEHMANN, and JENNIFER AMES STUART*

It is increasingly apparent that the financial value of a firm depends on
off-balance-sheet intangible assets. In this article, the authors focus on
the most critical aspect of a firm: its customers. Specifically, they demon-
strate how valuing customers makes it feasible to value firms, including
high-growth firms with negative earnings. The authors define the value of
a customer as the expected sum of discounted future earnings. They
demonstrate their valuation method by using publicly available data for
five firms. They find that a 1% improvement in retention, margin, or acqui-
sition cost improves firm value by 5%, 1%, and .1%, respectively. They
also find that a 1% improvement in retention has almost five times greater
impact on firm value than a 1% change in discount rate or cost of capital.
The results show that the linking of marketing concepts to shareholder

value is both possible and insightful.

Valuing Customers
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THE CUSTOMER LIFETIME VALUE CONCEPT
AND ITS CONTRIBUTION TO CORPORATE VALUATION

by Hans H.Bauer, Maik Hammerschmidt and Matthias Braehler*

ABSTRACT

The shareholder value and the customer lifetime value approach are conceptually and
methodically analogous. Both concepts calculate the value of a particular decision
unit by discounting the forecasted net cash flows by the risk-adjusted cost of capi-
tal. However, virtually no scholarly attention has been devoted to the question if any
of the components of the shareholder value could be determined in a more market-
oriented way using individual customer lifetime values. Therefore, the main objecti-
ve of this paper is to systematically explore the contribution of both concepts to the
field of corporate valuation.

At first we present a comprehensive calculation method for estimating both the indi-
vidual lifetime value of a customer and the customer equity. After a critical exami-
nation of the shareholder value concept, a synthesis of both value approaches allow-
ing for a disaggregated and more realistic corporate valuation will be presented.
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Hypothetical Contractual Setting

Number of active customers each year by year-of-
acquisition cohort:

2001 2002 2003 2004 2005
10,000 6,334 4,367 3,264 2,604
10,000 6,334 4,367 3,264

10,000 6,334 4,367

10,000 6,334

10,000

10,000 16,334 20,701 23,965 26,569

233

Hypothetical Contractual Setting
Assume

- Each contract is annual, starting on January 1 and
expiring at 11:59pm on December 31.

- An average net cashflow of $100/year.
- A 10% discount rate

What is the expected residual value of the customer
base at December 31, 20057
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Hypothetical Contractual Setting

Aggregate retention rate:

2,604 + 3,264 + 4,367 + 6,334

3,264 + 4,367 + 6,334 + 10,000 0.691

Expected residual value of the customer base at
December 31, 2005:
0.691¢

26,569 x t:zl $100 % =757 = $4,945,049
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Annual Retention Rates by Cohort

2001 2002 2003 2004 2005
0.633 0.689 0.747 0.798

0.633 0.689 0.747

0.633 0.689

0.633

0.633 0.655 0.675 0.691
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Vodafone Germany
Quarterly Annualized Churn Rate (%)

25

20 - \/\\/_—\

0 T T T T T T T T
Q2 02/03 Q3 02/03 Q4 02/03 Q1 03/04 Q2 03/04 Q3 03/04 Q4 03/04 Q1 04/05

Source: Vodafone Germany “Vodafone Analyst & Investor Day” presentation (2004-09-27)
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A Real-World Consideration

1 4

0.75 -

Retention Rate

0.5 T T T T T T

Year

At the cohort level, we (almost) always observe
increasing retention rates.
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Renewal rates at regional magazines vary;
generally 30% of subscribers renew at the end of
their original subscription, but that figure jumps
to 50% for second-time renewals and all the way
to 75% for longtime readers.

Fielding, Michael (2005), “Get Circulation Going: DM Redesign Increases Renewal Rates
for Magazines,” Marketing News, September 1, 9-10.
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Key Considerations

- Need to recognize inter-cohort differences (at any
point in time) when valuing a customer base.

- Need to project retention beyond the set of
observed retention rates.
- Why do retention rates increase over time?

Individual-level time dynamics (e.g., increasing
loyalty as the customer gains more experience
with the firm).

VS.
A sorting effect in a heterogeneous population.
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The Role of Heterogeneity

Suppose we track a cohort of 10,000 customers,
comprising two underlying segments:

- Segment 1 comprises one-third of the customers,
each with a time-invariant annual retention
probability of 0.9.

- Segment 2 comprises two-thirds of the customers,
each with a time-invariant annual retention
probability of 0.5.

241

The Role of Heterogeneity

# Active Customers Vi
Year Seg 1 Seg 2 Total Segl Seg?2 Total
1 3,333 6,667 10,000
3,000 3,334 6,334 0.900 0.500 0.633
2,700 1,667 4,367 0.900 0.500 0.689
2,430 834 3,264 0.900 0.500 0.747
2,187 417 2,604 0.900 0.500 0.798

(2 BN SNEN GG \S]

242



The Role of Heterogeneity

1.0 q
Segment 1
0.8 -
8 /
S 0.6
i Segment 2
= e
g
E 0.4
0.2
OO T T T T T T T T T
1 2 3 5 6 7 8 9 10
Year
243
Vodafone Italia
Churn Clusters
100 ~
Cluster P(churn) %CB
Low risk 0.06 70
Medium risk 0.35 20 50 A
High risk 0.65 10
0 T T T I T 1
0.0 0.2 04 0.6 0.8
P(churn)

Source: “Vodafone Achievement and Challenges in Italy” presentation (2003-09-12)
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E(RLV) of an Active 2001 Cohort Member

- If this person belongs to segment 1:

0.9!
1+0.1)t1

E(RLV) = > 100 X (
t=1
= $495
- If this person belongs to segment 2:

0.5¢
1+0.1)t1

E(RLV) = > 100 X (
t=1

= §92
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E(RLV) of an Active 2001 Cohort Member

According to Bayes’ theorem, the probability that this
person belongs to segment 1 is

P(renewed contract four times | segment 1) X P(segment 1)

P(renewed contract four times)
0.9% x 0.333

~ 0.9% x 0.333 + 0.5% X 0.667
— 0.84

— E(RLV) = 0.84 x $495 + (1 — 0.84) x $92 = $§430
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Valuing the Existing Customer Base

Recognizing the underlying segments:

Cohort # Active in 2005 P(seg.1) E(RLV)

2001 2,604 0.840 $430
2002 3,264 0.745 $392
2003 4,367 0.618 $341
2004 6,334 0.474 $283
2005 10,000 0.333 $226

Total expected residual value = $7,940,992
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Valuing the Existing Customer Base

Cohort Total RV  Underestimation

Naive $4,945,049 38%
Segment (model) $7,940,992
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Exploring the Magnitude of the Error
- Systematically vary heterogeneity in retention rates

- First need to specify (and validate) a flexible model
of contract duration

249

A Discrete-Time Model for Contract Duration

i. An individual remains a customer of the firm with
constant retention probability 1 — 0
— the duration of the customer’s relationship
with the firm is characterized by the (shifted)
geometric distribution:

St =1-0)t, t=1,2,3,...

ii. Heterogeneity in 0 is captured by a beta distribution
with pdf

0> 1(1 - 0)F!

f(6|0(!B): B(O(,ﬁ)
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A Discrete-Time Model for Contract Duration

- The probability that a customer cancels their
contract in period t

1
P(T=t|(x,[3)=JOP(T=t|9)f(9|(x,B)d9

_Blax+1,B+t-1) B
= B(e,B) , t=1,2,...

- The aggregate survivor function is

1
S(t] o, B) = L S(t160)£(0],B)do

_ B(e,B+1)

Bl B) t=1,2,...
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A Discrete-Time Model for Contract Duration
- The (aggregate) retention rate is given by

0
"ESa—1)
_ B+t-1
x4+ B+t-1"

- This is an increasing function of time, even though
the underlying (unobserved) retention rates are
constant at the individual-level.
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Computing E(CLV)

- Recall:

E(CLV) = Joo Elv(t)]S(t)d(t)dt.
0

- In a contractual setting, assuming an individual’s
mean value per unit of time is constant (v),

E(CLV) =v Joo S()d(t)dt.
0

- Standing at time s, a customer’s expected residual
lifetime value is

E(RLV) = ¥ JOOS(t 't > s)d(t)dt .

~
discounted expected residual lifetime
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Computing DERL

- Standing at the end of period n, just prior to the
point in time at which the customer makes her
contract renewal decision,

[ee)

DERL(d | ,n — 1 renewals) = > Stlt>n-1;0)

= (A+din
(1= +d)
B d+ 0 '

- But 0 is unobserved ....
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Computing DERL
- By Bayes’ theorem, the posterior distribution of 0 is

Sm-110)f(0|xB)
Sn|e,B)

90(—1(1 _ 9)B+n—2

B, B+n—-1)

f(0]« B,n—1renewals) =

- It follows that

DERL(d | «, B,n — 1 renewals)
( B+n-1

x+pB+n-1

>2F1(1 B+ n; 0(+B+n,1+d)
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Computing DERL
Alternative derivation:
DERL(d | «, B n — 1 renewals)

Z (tlt>n-1;B8)
B (1+d)yt—n

St B) ( 1 )t—"
Sm-1]e,B)\1+d
B(e,B+1) < 1 )t—n
B, B+n—-1)\1+d
B+n-1
x+Bf+n-1

I
Mg T

t

n

Il
M e

o~

=n

)2F1(1 B+ n; o<+B+n,1+d)
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Impact of Heterogeneity on Error

- Assume the following arrival of new customers:

2001 2002 2003 2004 2005
10,000 10,000 10,000 10,000 10,000

- Assume 7 = $1 and a 10% discount rate.

- For given values of « and f, determine the error
associated with computing the residual value of the
existing customer base using the naive approach (a
constant aggregate retention rate) compared with
the “correct” model-based approach.
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Two Scenarios

g(0)

Case x B E(0O) S(1) S(2) S(3) S(4)

1 3.80 15.20 0.20 0.800 0.684 0.531 0.439
2 0.067 0.267 0.20 0.800 0.760 0.738 0.724
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Computing DERL Using Excel
Recall our alternative derivation:
DERL(d | &, B,n — 1 renewals)
_i S(t| e, B) 1 \t-n
(132)

Sm-1|e,B)\1+d

We compute S(t) from the sBG retention rates:

t ,
B+i—1
t =|| - wh = )
S(t) i:11flw ere v; Xt Bri-1
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Calculating DERL

A B c | D | E
1 |alpha 3.8 DERL 3.59
2 |beta 15.2
3 2 renewals (n=3)
4 t S(t) S(tt>n-1) disc.
5 0 1.0000 | -SUMPRODUCT(D6:D205,E6:E205)|
6 1 0.8000
7 > /06480 [=B8/BS7
8 3 / 0.5307 >~ 0.8190  1.0000
9 . oo " 0.6776/ , 0.9091
10 |‘(B$2+A§ 1)/(B31+B$2+A6-1) B5 ] 0.5656 /' 0.8264
11 6 0.3085 .7513
12 7 0.2616 =171 N(3A9 3).6830
13 8  0.2234 0.3447  0.6209
14 9  0.1919 0.2962)  0.5645
15 ___1o__o016es9 __ _ __ _ _ 0250 05132
204 199 5.82E-05 8.98722E-05| 7.71E-09
205 200 5.72E-05 8.83056E-05 7.01E-09
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Number of Active Customers: Case 1

2001 2002 2003 2004 2005 n E(RLV)
10,000 8,000 6,480 5,307 4,391 5 $3.84
10,000 8,000 6,480 5,307 4 $3.72
10,000 8,000 6,480 3  $3.59
10,000 8,000 2 $3.45
10,000 1 $3.31

10,000 18,000 24,480 29,787 34,178

Aggregate 04-05 retention rate = 24,178/29,787 = 0.81
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Impact of Heterogeneity on Error: Case 1

e}

. . 0.81¢
Naive valuation = 34,178 x > (

1+0.1)t1

= $105,845
Correct valuation = 4,391 x $3.84 + 5,307 x $3.72
+ 6,480 x $3.59 + 8,000 x $3.45
+ 10,000 x $3.31
= $120,543

Naive underestimates correct by 12%.
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Number of Active Customers: Case 2

2001 2002 2003 2004 2005 E(RLV)

n
10,000 8,000 7,600 7,383 7,235 5 $10.19
10,000 8,000 7,600 7,383 4 $10.06
10,000 8,000 7,600 3 $9.86
10,000 8,000 2 $9.46
10,000 1 $7.68

10,000 18,000 25,600 32,983 40,218

Aggregate 04-05 retention rate = 30,218/32,983 = 0.92
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Impact of Heterogeneity on Error: Case 2

e}

. . 0.92¢
Naive valuation = 40,218 x > (
t=

1+0.1)t1

= $220,488
Correct valuation = 7,235 x $10.19 + 7,383 x $10.06
+ 7,600 x $9.86 + 8,000 x $9.46
+ 10,000 x $7.68
= $375,437

Naive underestimates correct by 41%.
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Interpreting the Beta Distribution Parameters

X L
mean U = x and polarization index ¢ =

+ P

E(0) =0.4 E0) =0.4
¢ -0 ¢-1

g(0)

x+p+1

0.0 0.5 1.0 0.0 0.5
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Shape of the Beta Distribution

1.00
J

0.75 A

K 0.50 IM U

0.25
r

0.00 T T T

0.00 0.25 0.50 0.75 1.00

¢
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Error as a Function of uy and ¢

For a fine grid of points in the (u, ¢) space, we determine the
corresponding values of («, ) and compute % underestimation:

100
80
60

40

% underestimation

20

Error as a Function of u and ¢
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SUNIL GUPTA, DONALD R. LEHMANN, and JENNIFER AMES STUART*

It is increasingly apparent that the financial value of a firm depends on
off-balance-sheet intangible assets. In this article, the authors focus on
the most critical aspect of a firm: its customers. Specifically, they demon-
strate how valuing customers makes it feasible to value firms, including
high-growth firms with negative earnings. The authors define the value of
a customer as the expected sum of discounted future earnings. They
demonstrate their valuation method by using publicly available data for
five firms. They find that a 1% improvement in retention, margin, or acqui-
sition cost improves firm value by 5%, 1%, and .1%, respectively. They
also find that a 1% improvement in retention has almost five times greater
impact on firm value than a 1% change in discount rate or cost of capital.
The results show that the linking of marketing concepts to shareholder

value is both possible and insightful.

Valuing Customers

269

Retention Elasticities

Widely-held belief that improvement in customer
retention can have a major impact on customer (and
therefore firm) value (Reichheld 1996).

Gupta et al. (2004) report an average retention
elasticity of 5.

What happens when we recognize heterogeneity-
induced dynamics in retention rates?
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Retention Elasticities as a Function of u and ¢

We determine the retention elasticity for the values of « and f8
associated with each point on the (u, ¢) unit square:

oot /?V |

04l /
02l ) //(7 ‘ /

L L L
0.0 0.2 0.4 0.6 0.8 1.0

Re-analysis Using (71, 2)

- u and ¢ are not quantities that most managers or
analysts think about; retention rates are easier to

comprehend.
- Since the period 1 and 2 retention rates are,
respectively,
B . B+1
= o<+Bandrz_ x+B+1°
it follows that
o = (1 =11 -1) and § - M_
Y2 —1 r2—1n
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Shape of the Beta Distribution (1, 72)

1.00
u
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0.75 ’
M ./
2 0.50 1 ’
J
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0.00 £ . : .
0.00 0.25 050 0.75 1.00
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273

Error as a Function of (71, 7»)

For a fine grid of points in the (#1,72) space, we determine the
corresponding values of («, ) and compute % underestimation:

;o)) )
4

2

0.2 /
s
-
’
’

.

/

L L L L
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.

©
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Retention Elasticities as a Function of (71, 7>)

We determine the retention elasticity for the values of o and f8
associated with each point on the (7, 72) space:

1.0

ULl 11 & i N T \‘{J 7
Nl 2 L ,
?a \ T \o ’\/ 577
~ \;/
08F @« L7 ]
L
v
12
o ]
/
(5] //
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02r
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Further Reading

Fader, Peter S. and Bruce G.S. Hardie (2007), “How to Project
Customer Retention,” Journal of Interactive Marketing, 21
(Winter), 76-90.

Fader, Peter S. and Bruce G.S. Hardie (2006), “Customer-Base
Valuation in a Contractual Setting: The Perils of Ignoring
Heterogeneity.” <http://brucehardie.com/papers/022/>

Fader, Peter S. and Bruce G.S. Hardie (2007), “Computing
DERL for the sBG Model Using Excel.”
<http://brucehardie.com/notes/018/>
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<http://brucehardie.com/notes/017/>
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives | Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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Contract Duration in Continuous-Time

i. The duration of an individual customer’s
relationship with the firm is characterized by the
exponential distribution with pdf and survivor
function,

FIA) =Ae M
S(t|A) =e™M

ii. Heterogeneity in A follows a gamma distribution
with pdf
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Contract Duration in Continuous-Time

This gives us the exponential-gamma model with pdf
and survivor function

Pt 7, o) = L FEINGA T, 00) dA
v X r+1
T X ((x n t)
IOOS(t | A)g(A|7r,x)dA
0

B ((xit)r

279

S(t|r,x)

The Hazard Function
The hazard function, h(t), is defined by

Pt<T<t+At|T >
ht) = lim 2 L+ AT > 1)
At—0 At

J(t)
1 - F(t)

and represents the instantaneous rate of “failure” at
time t conditional upon “survival” to t.

The probability of “failing” in the next small interval of
time, given “survival” to time t, is

Pt<T<t+At|T>t)=h(t) XAt

280



The Hazard Function

- For the exponential distribution,

h(t|A) = A

- For the EG model,

v

hitlr,x) = o

- In applying the EG model, we are assuming that the
increasing retention rates observed in the aggregate
data are simply due to heterogeneity and not
because of underlying time dynamics at the level of
the individual customer.
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Computing DERL

- Standing at time s,
DERL = J S(t1t > s)d(t — s)dt
s

- For exponential lifetimes with continuous
compounding at rate of interest 6,

DERL(S | A, tenure of at least s) = J Ae Me-otgt
0

1
A+0O

- But A is unobserved ....
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Computing DERL

By Bayes’ theorem, the posterior distribution of A for an
individual with tenure of at least s,

SIADgA|r, x)

g(A |7, o, tenure of at least s) =

S(s|r,x)
B (O(+S)7Ar—1e—2\((x+s)
- I'(r)
283
Computing DERL

It follows that
DERL(6 | 7, &, tenure of at least s)
= J {DERL((S | A, tenure of at least s)
0

X g(A |7, &, tenure of at least S)}d}\
= (x+ )" W, r;(x+5)5)

where Y (-) is the confluent hypergeometric function of
the second kind.
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Models for Noncontractual Settings
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives | Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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Setting
- New customers at CDNOW, 1/97-3/97

- Systematic sample (1/10) drawn from panel of
23,570 new customers

- 39-week calibration period
- 39-week forecasting (holdout) period

- Initial focus on transactions
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Purchase Histories

ID = 0001 ¢ >

<

ID = 0002

ID=1178 >

ID=1179 o >

ID = 2356 o >

ID = 2357 o .

Week 0 Week 39
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# transactions

Raw Data

A | B [ C

1 D X T

2 0001 2 38.86
3 0002 1 38.86
4 0003 0 38.86
5 0004 0 38.86
6 0005 0 38.86
7 0006 7 38.86
8 0007 1 38.86
9 0008 0 38.86
10 0009 2 38.86
11 0010 0 38.86
12 0011 5 38.86
13 0012 0 38.86
14 0013 0 38.86
15 0014 0 38.86
16 0015 0 38.86
17 0016 0 38.86
18 0017 10 38.86
19 0018 1 38.86
20 f __oot9 3 _ 3871
1178 1177 0 32.71
1179 1178 1 32.71
1180 1179 0 32.71
1181 1180 O 3271
2356 2355 0 27.00
2357 2356 4 27.00
2358 2357 0 27.00
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Cumulative Repeat Transactions

3000 -

2000 -+

1000 -

Week

290

39



Modelling Objective

Given this customer database, we wish to determine the
level of transactions that should be expected in next
period (e.g., 39 weeks) by those on the customer list,
both individually and collectively.
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Modelling the Transaction Stream

- A customer purchases “randomly” with an average
transaction rate A

- Transaction rates vary across customers
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Modelling the Transaction Stream

- Let the random variable X (t) denote the number of
transactions in a period of length ¢ time units.

- At the individual-level, X (t) is assumed to be
distributed Poisson with mean At:

(At)"e‘”

P(X(t) = x|A) = por

- Transaction rates (A) are distributed across the
population according to a gamma distribution:

o(rAr—le—(xA
I'(r)

glr, o) =

293

Modelling the Transaction Stream

The distribution of transactions for a randomly-chosen
individual is given by:

PX(D) = xI7, 00) = j:Poc(t) — x[A) g(A) dA

N FISTTJ;;) (a(j(r t)r ((Xit)x ’

which is the negative binomial distribution (NBD).
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# transactions

Frequency of Repeat Transactions

1500
Il Actual
1 NBD

1000 -

Frequency

500 -

0 | | IH I\H .\’_‘ /| Tl .\’_‘
1 2 3 4 5 74

6

# Transactions
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Tracking Cumulative Repeat Transactions

6000

—— Actual

4000 -+

2000 ~
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# transactions

Tracking Weekly Repeat Transactions

150

—— Actual
--- NBD

100

50

Conditional Expectations

- We are interested in computing E(Y (t)|data), the

expected number of transactions in an adjacent
period (T, T + t], conditional on the observed
purchase history.

- For the NBD, a straight-forward application of

Bayes’ theorem gives us

E[Y(D)|r,0,x,T] = (Ver)

x+ T
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Conditional Expectations

T T T T T T T T
— Actual
~0- NBD ©
9k /A
/
/
8k /

Expected # Transactions in Weeks 40-78
o

3
# Transactions in Weeks 1-39
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Conditional Expectations

Cust. A | >
Cust. B ! >
Week 0 Week 7 Week 39

According to the NBD model:
Cust. A: E[Y(39) |x =4,T = 32]

3.88
Cust.B: E[Y(39)|x =4,T =32] =7
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# transactions

Tracking Cumulative Repeat Transactions

6000 - ‘
—— Actual ‘
- -~ NBD | I
4000 - | il
\ e
\ =
2000 - =77
|
|
0 =" T T l T T 1
0 13 26 39 52 65 78
Week
301
Towards a More Realistic Model
Total
wv
c
o
g
3
S CustB
= o
* CustA . Cfit c
P
e et
P
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Modelling the Transaction Stream

Transaction Process:

- While active, a customer purchases “randomly”
around his mean transaction rate

- Transaction rates vary across customers
Dropout Process:
- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers
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The Pareto/NBD Model
(Schmittlein, Morrison and Colombo 1987)

Transaction Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, x).

Dropout Process:

- Each customer has an unobserved “lifetime” of length T,
which is distributed exponential with dropout rate p.

- Heterogeneity in dropout rates across customers is
distributed gammal(s, B).
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Deriving the Model Likelihood Function

- Let us assume we know when each of a customer’s
x transactions occurred during the period (0, T']
(denoted by &4, t2,...,tx)

- There are two possible ways this pattern of
transactions could arise:

i. The customer is still alive at the end of the
observation period (i.e., T > T)

ii. The customer became inactive at some time T in
the interval (t,, T']
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Deriving the Model Likelihood Function

Conditional on A,

LA|ty,....tx, T, T>T)
— Ae_AtlAe_A(tZ_tl) - e . Ae_A(tX_tX—l)e_)\(T_tx)

— Axe—AT

L(A|ty,...,ty,T,inactive at T € (ty, T])

— Ae_AtlAe_A(tZ_tl) . am Ae_A(tX_txfl)e_)\(T_tX)
— Axe—AT
(Note: we do not need t4,...,ty; x and t, are sufficient.)

306



Deriving the Model Likelihood Function

Removing the conditioning on T,

L(A,IJ |x1tX! T)

=LA|x, T, T >T)P(Tt>T|u)
T
+ | L(A|x,T,inactiveatT € (ty, T])f(T ) dT
tx
_ N e, AT

— e_(A+IJ)T
A+ U A+ U
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Summarizing Purchase Histories

- Given the model assumptions, we do not require
information on when each of the x transactions
occurred.

- The only customer-level information required by
this model is recency and frequency.

- The notation used to represent this information is
(x,ty, T), where x is the number of transactions
observed in the time interval (0, T'] and ¢,

(0 <ty < T)is the time of the last transaction.
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Purchase Histories

ID = 0001 ¢ >
ID = 0002 ¢ .
ID=1178 < >
ID=1179 >
ID = 2356 o >
ID = 2357 >

Week 0 Week 39
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Raw Data
A ] B | ¢ | D
1 ID X t x T
2 0001 2 30.43 38.86
3 0002 1 1.71 38.86
4 0003 0 0.00 38.86
5 0004 0 0.00 38.86
6 0005 0 0.00 38.86
7 0006 7 29.43 38.86
8 0007 1 5.00 38.86
9 0008 0 0.00 38.86
10 0009 2 35.71 38.86
11 0010 0 0.00 38.86
12 0011 5 24.43 38.86
13 0012 0 0.00 38.86
14 0013 0 0.00 38.86
15 0014 0 0.00 38.86
16 0015 0 0.00 38.86
17 0016 0 0.00 38.86
18 0017 10 34.14 38.86
19 0018 1 4.86 38.86
20| _ 0019 3 __2829 __ 3871
1178 1177 0 0.00 32.71
1179 1178 1 8.86 32.71
1180 1179 0 0.00 32.71
1181] _ 1180 _ 0 ___000 __3271
2356 2355 0 0.00 27.00
2357 2356 4 26.57 27.00
2358 2357 0 0.00 27.00
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Pareto/NBD Likelihood Function

Removing the conditioning on A and u:
L(V! (X!S!B|X!tX!T)
T(r+x)a’ BS 5 2F1(V+s+x,s+1;r+s+x+1;O‘z‘;ti)
B I'(r) {(r+s+x> (0 + ty )T TSHX

. .o=B
Y+ x dFI(r+5+ X, +5+x+1;577) if o= B
(X + T)r+s+x ’ -

Y¥+s+Xx

L(Tl O(,S,B|X,tx, T)

:l—(,,,JrX)(XrBs{( s )2F1(r+s+x,r+x;r+s+x+1;£;t‘fc)

I'(r) r+s+x (B+ ty)V+stx

( ¥+ x )2F1(T+S+x,r+x+1;r+s+x+1;g+‘1’f

(B + T)V+S+X

)},ifcxsﬁ

Y¥+s+X
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Key Results
E[X(t)]

The expected number of transactions in the time
interval (O, t].

P(alive | x,ty, T)

The probability that an individual with observed
behavior (x,t,, T) is still “active” at time T.

E(Y() | x,tx,T)

The expected number of transactions in the
future period (T, T + t] for an individual with
observed behavior (x,t,,T).
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Expected Number of Transactions

Given that the number of transactions follows a Poisson
process while the customer is alive,

i. if T > t ,the expected number of transactions is
simply At.

ii. if T < t, the expected number of transactions in the
interval (0, 7] is AT.
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Expected Number of Transactions

Removing the conditioning on T:

t
E[X(t)|A,u]l = AtP(T > t|u) +JO ATf(T|ludr
A A

_ = _ _e—ut

[T

Taking the expectation over the distributions of A and u:

E[X(t) |7, «s, ]

- Jo Jo E[X(0) | A, ug (A7, 00 g(u |5, B) dAdp
B |, (B
x(s—1) B+t .
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P(alive | x, ty, T)

- The probability that a customer with purchase
history (x,ty, T) is “alive” at time T is the
probability that the (unobserved) time at which he
becomes inactive (T) occurs after T, P(T > T).

- By Bayes’ theorem:

LA|x, T, Tt >T)P(t>T]|u)

P(T>TIA X b, T) = LA, u]x,ty,T)

Axe—(/\-l—[,l)T
- L(AaIJ'x’tXaT) -

- But A and p are unobserved.
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P(alive | x, ty, T)

We take the expectation of P(T > T | A, u,x,ty, T) over
the distribution of A and u, updated to take account of
the information (x,ty, T):

P(alive |7, x,s,B,x,tx, T)
- | ] fpers T x )
0 Jo

XgA,ulr, o, s, B, x,ty, T)} dAdu
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P(alive | x, &y, T)
- By Bayes’ theorem, the joint posterior distribution
of A and u is

g(A;U|ra(an,B,x’tx;T)

_ L(A,H|X’tx;T)g(A|r,0()g(lJ|5,B)
L(ria!SlB|X!tX!T) .

- Therefore,

P(alive |7, «,s,B,x,tx, T)
B ' +x)x"p*
T+ T (B+ T)s

/L(T,(X,S,B|X,tx,T).
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Conditional Expectations

Let Y (t) = the number of purchases made in the period
(T, T + t].

E[Y(t) |A,u,aliveat T] = AtP(t > T+t|u,t>T)

T+t
+J ATf(T|u,T>T)dt
T

— A _ Ae_ut_

uoou

E[Y(®) | A, u,x,tx, T] = E[Y(t) | A, u,alive at T']
><1')(1_ > T|A5uaxitX5T)
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Conditional Expectations

Taking the expectation over the joint posterior
distribution of A and u yields:

E[Y(t) |7, 58,B,x,ty, T]

B ['(r +x)x"B°
T (x+T)x(B+T

LB+ | (BT o
(x+T)(s—-1) B+T+t |

)S/L(r,a,s,B|x,tX,T)}
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Frequency of Repeat Transactions

1500
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[ Pareto/NBD

1000 -
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Tracking Cumulative Repeat Transactions

5000

|
— Actual \
- - - Pareto/NBD ‘
\
\

4000 +

3000

2000

# transactions

1000
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Tracking Weekly Repeat Transactions

150 q |
| Actual
| - - - Pareto/NBD
\
» 100 4
s 3 !
o] So
S ~ |
2 / S
© ! =~
= / Wa s
* 50 4 // | N
[/ - -
Il ‘
A \
i1
0 T T 1 T T 1
0 13 26 39 52 65 78
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Conditional Expectations

N

— Actual
—#- Pareto/NBD

N w ES & )
T T T T T

Expected # Transactions in Weeks 40-78

o

# Transactions in Weeks 1-39
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Computing E(CLV)
E(CLV) = J E[v(t)]S(t)d(t)dt
0
If we assume that an individual’s spend per transaction

is constant, v (t) = net cashflow /transaction x t(t)
(where t(t) is the transaction rate at t) and

E(CLV) = E(net cashflow / transaction)

X JmE[t(t)]S(t)d(t)dt.
0
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Computing E(RLV)
- Standing at time T,

E(RLV) = E(net cashflow / transaction)

« JwE[t(t)]S(t 't > T)d(Ddt .
" T J

discounted expected residual transactions

- The quantity DERT, discounted expected residual
transactions, is the present value of the expected
future transaction stream for a customer with
purchase history (x,ty, T).
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Computing DERT

For Poisson purchasing and exponential lifetimes with
continuous compounding at rate of interest 9,

o0 _ut
DERT(S | A, y,alive at T) = J A(e—>e‘5“‘T)dt
T \eHT
= J Ae HSe=95ds
0
A
U+0
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Computing DERT
DERT (6 |7, e, 8, B, x,tx, T)
- Jm r {DERT(a | A, u, alive at T)
0 JO

X P(aliveat T | A, u,x,ty, T)

XgAulr,o,s,B,x,ty, T)}d)\du

BT (r +x + 1D)Y(s,s;0(B+T))
IF()(x+ T)r+>*+1L(r, o, s, Bl x,ty, T)

where Y (-) is the confluent hypergeometric function of
the second kind.
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Continuous Compounding

- An annual discount rate of (100 x d)% is equivalent
to a continuously compounded rate of 6 = In(1 + 4).

- If the data are recorded in time units such that there
are k periods per year (k = 52 if the data are
recorded in weekly units of time) then the relevant
continuously compounded rate is 6 =In(1 + d)/k.

328



DERT by Recency and Frequency

)

ounted expected trans
o

DET (disc
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w
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S0 o

Frequency (x)

Recency (tx)
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Iso-Value Representation of DERT

Frequency (x)

30 40 50
Recency (tx)
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The “Increasing Frequency” Paradox

Cust. A <“ .

Cust. B <v >

Week 0 Week 78

DERT
Cust. A 4.6
Cust. B 1.9
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Key Contribution

- We are able to generate forward-looking estimates
of DERT as a function of recency and frequency in a
noncontractual setting:

DERT = f(R,F)

- Adding a sub-model for spend per transaction
enables us to generate forward-looking estimates of
an individual’s expected residual revenue stream
conditional on his observed behavior (RFM):

E(RLV) = f(R,F,M) = DERT X g(F,M)
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Modelling the Spend Process

- The dollar value of a customer’s given transaction
varies randomly around his average transaction
value

- Average transaction values vary across customers
but do not vary over time for any given individual

- The distribution of average transaction values
across customers is independent of the transaction
process.
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Modelling the Spend Process

- For a customer with x transactions, let z1, zo, ..., Zy
denote the dollar value of each transaction

- The customer’s average observed transaction value
X

My = > zi/X
i=1

is an imperfect estimate of his (unobserved) mean
transaction value E (M)

- Our goal is to make inferences about E(M) given
m,, which we denote as E(M|m,, x)
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Summary of Average Transaction Value

946 individuals (from the 1/10th sample of the cohort)
make at least one repeat purchase in weeks 1-39

$
Minimum 2.99
25th percentile 15.75
Median 27.50
75th percentile 41.80
Maximum 299.63
Mean 35.08
Std. deviation 30.28
Mode 14.96
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Modelling the Spend Process

- The dollar value of a customer’s given transaction is
distributed gamma with shape parameter p and
scale parameter v

- Heterogeneity in v across customers follows a
gamma distribution with shape parameter q and
scale parameter y
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Modelling the Spend Process

Marginal distribution for m.,:

_ Dipx+q) y'ml 'xrx
f(mx“?,q,}’,x) - r(px)r(q) (y + mxx)PXJrq

Expected average transaction value for a customer with
an average spend of m, across x transactions:

E(M|plcby!mx’x) =
q-1 Yp pXx
(px+q—1) q-1 * (px+q—1>mx
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Distribution of Average Transaction Value

0.04

T T
—— Actual (nonparametric density)
— - Model (weighted by actual x)

- Il L L L
$0 $50 $100 $150 $200 $250 $300
Average transaction value (m,)
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E(Monetary Value) as a Function of M and F

$55
$so-

$451

$401

E sssf
s $:

o

$30[

$251

$20 - —- m =850

$15-T
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Computing Expected Residual Lifetime Value

We are interested in computing the present value of an
individual’s expected residual margin stream
conditional on his observed behavior (RFM)

E(RLV) = margin X revenue/transaction X DERT
= margin X E(M|p,q,y, My, X)
X DERT (6 | v, S, B, x,tx, T)

340



Estimates of E(RLV)

(Margin = 30%, 15% discount rate)
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Summary: Closing the Loop

Combine the model-driven RFM-CLV relationship with
the actual RFM patterns seen in our dataset to get a
sense of the overall value of this cohort of customers:

- Compute each customer’s expected residual lifetime
value (conditional on their past behavior).

- Segment the customer base on the basis of RFM
terciles (excluding non-repeaters).

- Computed average E(RLV) and total residual value
for each segment.
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Distribution of Repeat Customers

200 —
150 -

100 -

Number of Customers

4
60
20+ 80 Recency (t)

Frequency (x)

(12,054 customers make no repeat purchases)
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Average E(RLV) by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $4.40
M=1 1 $6.39 $20.52 $25.26
2 $7.30 $31.27 $41.55
3 $4.54 $48.74 $109.32
M=2 1 $9.02 $28.90 $34.43
2 $9.92 $48.67 $62.21
3 $5.23 $77.85 $208.85
M=3 1 $16.65 $53.20 $65.58
2 $22.15 $91.09 $120.97
3 $10.28 $140.26 $434.95
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Total Residual Value by RFM Segment

Recency
Frequency 0 1 2 3
M=0 0 $53,000
M=1 1 $7,700 $9,900 $1,800
2 $2,800 $15,300 $17,400
3 $300 $12,500 $52,900
M=2 1 $5,900 $7,600 $2,300
2 $3,600 $26,500 $25,800
3 $500 $37,200 $203,000
M=3 1 $11,300 $19,700 $3,700
2 $7,300 $45,900 $47,900
3 $1,000 $62,700 $414,900
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An Alternative to the Pareto/NBD Model

- Estimation of model parameters can be a barrier to
Pareto/NBD model implementation

- Recall the dropout process story:

- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers

- Let us consider an alternative story:

- After any transaction, a customer tosses a coin

heads — become inactive
tails — remain active

- P(heads) varies across customers
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The BG/NBD Model
(Fader, Hardie and Lee 2005c¢)

Purchase Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, x).

Dropout Process:

- After any transaction, a customer becomes inactive with
probability p.

- Heterogeneity in dropout probabilities across customers is
distributed beta(a, b).

347

Deriving the Model Likelihood Function

- Let us assume we know when each of a customer’s
x transactions occurred during the period (0, T']
(denoted by ty, to,..., ty)

- There are two possible ways this pattern of
transactions could arise:

i. The customer is still alive at the end of the
observation period (i.e., T > T)

ii. The customer became inactive immediately after
the xth transaction (i.e., T = ty)
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Deriving the Model Likelihood Function

Conditional on A,

LA|ty,....t, T, T>T)
— Ae_AtlAe_A(tZ_tl) e Ae_A(tX_tX—l)e_A(T_tX)

— Axe—)\T

L(A|ty,...,ty, T,inactive at T = ty)
— Ae_AtlAe_A(tZ_tl) - e Ae_A(tX_tX—l)

— Axe—Atx

349

Deriving the Model Likelihood Function

Removing the conditioning on T,

LAp|x,ty,T)
=LA|x, T, T>T)P(t>T|p)
+ L(A|x,T,inactive at T = tx)P(T = tx | p)
_ (1 . p)XAXe_AT + 5x>0]9(1 . p)x—l}\xe—/\tx

where 6,-g =1 if x > 0, O otherwise.
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Deriving the Model Likelihood Function

Removing the conditioning on A and p,

Lir,,a,b|x,ty, T)
1 0
_ JO JO LA p | x,te, T)f A7, @) f(p | a,b)dAdp

1 roo rA\r—1,-Ax oa—1 b-1
_ o yxax,-AT X A" e p (1-p)
- Jo Jo (L= p)rite I'(r) B(a,b) ddp

1 roo
+ 5X>0J J {p(l - V)x_lee_Atx
0JO

O(VAr—le—)\(x pa—l(l _ p)b—l
T'(r) B(a,b)

}dAdp
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BG/NBD Likelihood Function

We can express the model likelihood function as:
L(Vs (Xia’i b |Xl tX) T) = Al ) A2 ) (A3 + 6X>0A4)

where

_Tr+x)u”
A=
I'la+b)I'(b+ x)
A, =

S IT(W)I(a+Db+x)

As = (o(iT>r+x

a 1 Y+Xx
As = (b+x—1)<(x+tx>
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BGNBD Estimation

A | B | ¢ | b J e | FF | 6 | H ] I

1 |r 0.243

2 |alpha 4.414 |=GAMMALN(B$1+B8)- =IF(B8>0,LN(B$3)-LN(B$4+B8-1)-

3 |a 0.793 |GAMMALN(B$1)+B$1*LN(B$2) (B$1+B8)*LN(B$2+C8),0)

4 b 2.426

5 |LL -0582.4 \ [=(B$1+B8)"LN(B$2+D8) | ¢

6

7 ID X tx T In(.) In(A_1) In(A_2) In(A_3) In(A_4)

8 0001 2 30.43 38.86 -0.4910 ' -8.4489  -9.4265

9 0002 1 1.71 38 -0.2828 -4.6814| -3.3709

10 =SUM(E8:E2364) 0.00 8.86 0.0000 -0.9140  0.0000

11 0002 0 0.00 38.86 0.0000 -0.9140  0.0000

12 a-anan s 00

137 | =FE+GB+LN(EXP(H8)+(B8>0)EXP(8)) | | _GAMMALN(BS3+BS4)+GAMMALN(BS4+B8)- bos

14 0007 1 5.00 38.86 GAMMALN(B$4)-GAMMALN(B$3+B$4+B8)  p4a3

15 0008 0 0.00 38.86 ; ; ; ; ;

16 0009 2 35.71 38.86] -9.5367 -0.8390 -0.4910| -8.4489 -9.7432

7] 0010 __ __ 0___000_ 3886 _:0.5538 _ 03602 _ 0.0000 _-0.9140 __ 0.0000|
2362 2355 0.00 27.00]  -0.4761]  0.3602  0.0000, -0.8363  0.0000

0 . . . . .
2363 2356 4 26.57 27.00 -14.1284 1.1450 -0.7922 -14.6252 -16.4902
2364 2357 0
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Model Estimation Results

BG/NBD Pareto/NBD

r 0.243 0.553
X 4.414 10.578
a 0.793

b 2.426

S 0.606
B 11.669
LL  -9582.4 -9595.0
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Frequency of Repeat Transactions
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Tracking Cumulative Repeat Transactions
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4 — - BG/NBD
Pareto/NBD
0 Il Il Il Il Il T
0 10 20 30 40 50 60 70 80
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Tracking Weekly Repeat Transactions

150
,, 100} ]
5
§
g
=
o
['s
>
3
=
50 —
— Actual
! ~ BG/NBD
‘ ‘ ‘ ‘ ‘ ‘ P‘areto/NBD
% 10 20 30 40 50 60 70 80
Week
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L L L
Conditional Expectations
7
— Actual
~ BG/NBD
—%- Pareto/NBD
6F J

Expected # Transactions in Weeks 40-78

# Transactions in Weeks 1-39
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Modelling the Transaction Stream

How valid is the assumption of Poisson
purchasing?

— Can transactions occur at any point in
time?
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Classifying Customer Bases

Grocery purchases Credit card

Continuous Doctor visits Student mealplan

Hotel stays Mobile phone usage
Opportunities for
Transactions
Event attendance Magazine subs

Discrete Prescription refills Insurance policy

Charity fund drives Health club m’ship

Noncontractual Contractual

Type of Relationship With Customers
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“Discrete-Time” Transaction Opportunities

“necessarily discrete” attendance at sports events
1 attendance at annual arts festival

charity donations

“generally discrete” )
blood donations

discretized by
recording process

cruise ship vacations
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“Discrete-Time” Transaction Data
A transaction opportunity is

- a well-defined point in time at which a transaction
either occurs or does not occur, or

- a well-defined time interval during which a (single)
transaction either occurs or does not occur.

— acustomer’s transaction history can be expressed
as a binary string:

v = 1 if a transaction occurred at/during the tth
transaction opportunity, O otherwise.
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Repeat Purchasing for Luxury Cruises
(Berger, Weinberg, and Hanna 2003)

1993 1994 1995 1996 1997 1994 1995 1996 1997 # Customers

Y > Y > Y > Y > Y 18
L—» N 34
— N Y 36
Ty o4
N—T>Y Y 14
_[:: N 62
—~ N Y 18
_[:: N 302
— N Y T>Y Y
T
— N Y
T
N—T>Y Y
T
— N Y
T

118
36
342
44
292
216
4482

O O O O F = = = O O O O F H = =
S O = = O O = = O O M= = O O = =

1
0
1
0
1
0
1
0
1 16
0
1
0
1
0
1
0

O O O O O O O O o e e e
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Objectives

- Develop a model of buyer behavior for discrete-
time, noncontractual settings.

- Derive expressions for quantities such as

- the probability that an individual is still “alive”

- the present value of the expected number of
future transactions (DERT — E(RLV)
calculations)

conditional on an individual’s observed behavior.

- Complete implementation within Microsoft Excel.
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Model Development

A customer’s relationship with a firm has two phases:

he is “alive” (A) for some period of time, then becomes
permanently inactive (“dies”, D).

- While “alive”, the customer buys at any given transaction
opportunity (i.e., period t) with probability p:

P(Y; =1]|p,aliveatt) =p

- A “living” customer becomes inactive at the beginning of a
transaction opportunity (i.e., period t) with probability 0

= P(alive at t| ) = P(AA...A|0) = (1 — 0)t
t
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Model Development
Whatis P(Y1 =1,Y,=0,Y3=1,Y,=0,Y5 =0 p, 0)?
- Three scenarios give rise to Y, = 0,Y5 = O:
Alive?
t=1 t=2 t=3|t=4 t=5
iy A A A D
i) A A A A D
iii) A A A A

- The customer must have been alive for t =1, 2, 3
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Model Development

We compute the probability of the purchase string
conditional on each scenario and multiply it by the
probability of that scenario:

f£(10100|p,0) = p(1 —p)p (1 - 0)°6

P(AAADD)
_ _ _ 4
+p(l-p)p(l-p)(1-0)°0
P(AAAAD)
_ _ _ _ 5
+p(1-p)pd-p)(1-p)(1-20)
P(Y1=1,Y>=0,Y3=1) P(AAAAA)
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Model Development

- Bernoulli purchasing while alive = the order of a
given number of transactions (prior to the last
observed transaction) doesn’t matter

- For example, (10100 | p,0) = f£(01100]| p, 0)

- Recency (time of last transaction, t,) and frequency
(number of transactions, x = >;' ; ;) are sufficient
summary statistics

=> we do not need the complete binary string
representation of a customer’s transaction
history
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Repeat Purchasing for Luxury Cruises

1994 1995 1996 1997 # Customers

O O = H O O F = O O = = O O = =

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

O O O O O O O O K K FH P FH B = &
O O O O - O OO O =

18
34
36
64
14
62
18
302
16
118
36
342
44
292
216
4482
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O = = N~ N W = N Wb R

-
=

O = NN W W W o

Model Development

n
4
4
4
4
4
4
4
4
4
4
4

# Customers
18
66
98

216
34
180
292
64
342
302
4482

For a customer with purchase history (x, t,, n),

L(p,0|x,tx,n) =p*(1-p)" X1 -0)"

n—tx—1

+ z pX(l _ p)tx—x+i9(1 _ Q)tx+i
i=0

We assume that heterogeneity in p and 0 across
customers is captured by beta distributions:

gpla,B) =

g0ly,0) =

ptxfl(l _ p)ﬁ*l

B(x, B)

ov-1(1 - 9)°-!
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Model Development
Removing the conditioning on p and 0,
L(e,B,y,0|x,tx,n)

1 ,1
B Jo Jo L(p,0|x, tx,)g(p |, B)g(0]y,5) dpdo

_ B(a+x,B+n—x)B(y,6 +n)
- B(a, B) B(y,0)

n—ty—1

N Z Blx+x,B+tx—x+1)B(y+1,0 +tx+1)
i=0

B(«x, B) B(y,0)

... which is (relatively) easy to code-up in Excel.
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BGBB Estimation

A ]l B ] ¢ [ b J E T F [ G [ H T 1 T J 1T KL

| 1| alpha 0.66 B(alpha,beta) 0.4751
| 2 | beta 5.19
| 3 | gamma 173.76 B(gamma,delta) 4E-260
| 4 | delta 1882.93
5]
| 6 | LL -7130.7
7] i
| 8 | X t_x n #cust. L(.[X=x,t_x,n) n-t_x-1 0 1 2 3
1 9| 4 4 4 18 -106.7) 0.0027 -1 0.0027 0 0 0 0
110 | 3 4 4 66 -368.0 0.0038 -1/ 0.0038 0 0 0 0
111 2 4 4 98 -463.5 0.0088 -1/ 0.0088 0 0 0 0
112 ] 1 4 4 216, -704.4) 0.0384 -1 0.0384 0 0 0 0
| 13| 3 3 4 34 -184.6) 0.0044 0 0.0038 0.0006 0 0 0
| 14 | 2 3 4 180/ -829.0 0.0100 0 0.0088 0.0012 0 0 0
115 ] 1 3 4 292 -920.8 0.0427 0 0.0384 0.0043 0 0 0
1 16 | 2 2 4 64 -2835 0.0119 1 0.0088 0.0019 0.0012 0 0
117 | 1 2 4 342 -1033.4/ 0.0487 1 0.0384 0.0060 0.0043 0 0
118 | 1 1 4 302 -863.0 0.0574 2 0.0384 0.0087 0.0060 0.0043 0

19 0 0 4 4482 -1373.9 0.7360 3 04785 0.0845 0.0686 0.0568 0.0476
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BGBB Estimation

A [ B ] ¢c I b [ EJT F T T HT 1II' T K T L [ ™
1 alpha 0.66 B(alpha,beta) 0.4751 — "
1 beta 519 ~<—{ =EXP(GAMMALN(B1)+GAMMALN(B2)-GAMMALN(B1+B2)) |
% garra 1;22'32 B(gamma,delta) 4E-260 ™ _Eyp(GAMMALN($B$1+A9)+GAMMALN($B$2+CO-A9)-
= elta : GAMMALN($B$1+$B$2+C9))/$SE$1*EXP(GAMMALN($B$3)+
Lo AMMALN($B$4+C9)-GAMMALN($B$3+$B$4 E
& LL -7130.7 <—| —SUM(E9E19) G ($B$4+C9)-G ($B$3+$B$4+C9))/$ES3
7 i
8 X tx n  #cust. L(.[X=x,t_x,n) n-t_x-1 0 1 2 3
9 4 4 4 18| -106.7 0.0027 -1 0.0027 0 0 0 0
10 3 4 4 66 200 N N NN2Q 1 N NN2Q / n n n 0
EER 2 4 4 o8 | =IF($H9<J$8,0,EXP(GAMMALN($B$1+$A9)+GAMMALN($B$2+$B9-5A9+J3$8)- | ¢
2] 1 4 4 216 GAMMALN ($B$1+$B$2+$B9+J$8))/$ES1*EXP(GAMMALN($B$3+1)+ 0
=Ty GAMMALN($B$4+$B9+J$8)-GAMMALN($B$3+$B$4+$B9+J$8+1))/$ES3)
13 3 3 4 34 0
14 2 3 4 180 -829.0] 0.0100 0 0.0088] 0.0012 0 0 0
15 1 3 4 292 -920.8 |=C15-B15-1 0 0.0384 0.0043 0 0 0
16 2 2 4 64 2835 0.0119 1 0.0088 0.0019 0.0012 0 0
17 1 2 4| =D19*LN(F19)) |4 0.0487 1 0.0384 0.0060 0.0043 0 0
18 1 1 4 02Ty -863.0 0.0574 —SUM(Ho:M19) 2384 00087 0.0060 0.0043 0
19 0 0 4 4482 -1373.9  0.7360 = 22 14785 0.0845 0.0686 0.0568 0.0476
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Model Fit
5000
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4000 - E
3000 - B
>
g
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X =0.66,8 = 5.19, 5

>
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Key Results
P(alive in period n + 1| x, tyx,n)

The probability that an individual with observed
behavior (x, ty, ) will be “active” in the next period.

E(X* |n*,X,tx,n)

The expected number of transactions across the next
n* transaction opportunities for an individual with
observed behavior (x, tyx,n).

DERT (d | x,tx,n)

The discounted expected residual transactions for an
individual with observed behavior (x, tyx,n).
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P(@alive in period n + 1 | x, fx, n)
- According to Bayes’ theorem,

P(data | alive in n)P (alive in n)
P(data)

P(alive in n | data) =

- Recalling the individual-level likelihood function,
L(p,0lx,tx,n)=p*(1-p)"*(1-0)"

n—tx—1

+ Z px(l - p)tx—x+i9(1 o Q)tx+i’
i=0

it follows that

P(alive in period n | p, 0, x, tx,n)

=p*(L—p)"*(1 - 0)" /L(p,0 | x,tx, 1)
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P(@alive in period n + 1 | x, fx, n)
For a customer with purchase history (x, t,, n),

P(alive in period n + 1| &, B,y,0, X, tx,n)
101
= J J {(1 — 0)P(alive in period n | p, 0, x, tx,n)
0 Jo

xg(p, 010, B,y,8,%,tx,n) | dp do

_ B(x+x,B+n—x)B(y,

o+n+1)
B(c, B)B(y,9) /L(O"B,Y,5|X,tx,n)
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Conditional Expectations

Let X* denote the number of purchases over the next
n* periods (i.e., in the interval (n,n + n*]).

Assuming the customer is alive in period n,

E(X*|n*, p,0,alive in period n)

n*

= > P(Y;=1|p,alive at t)P(alive at t | t > n, 0)
t=n+1

_p(1-06) pa-om+

0 0
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Conditional Expectations

For a customer with purchase history (x, t,, n),

E(X* |n*,O<,B,Y,5,x,tx,n)

1 1
=J J {E(X* |n*, p, 0,alive in period n)
0 Jo
X P(alive in period n | p, 0, x, tx, n)

Xg(p19|O(iﬁiysésxat)(!n)}dpdg

Blx+x+1,B+n—x)
B(«x,B)B(y,d)
><B(y—1,6+n+1)—B(y—1,6+n+n*+1)
L(o,B,y,01x,tx, 1)
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P(alive)
A | B ] c [ b EJTFJGJIHIJT I T JITJTKJITLIM]IINTITO

[ 1| alpha 0.66 B(alpha,beta)| 0.4751
[2] beta 519
| 3 | gamma 173.76/ B(gamma,delta)| 4E-260 =EXP(GAMMALN($B$1+A9)+GAMMALN($B$2+C9-A9)-
| 4] delta 1882.93 GAMMALN($B$1+$B$2+C9))* EXP(GAMMALN($B$3)+
L5 | GAMMALN($B$4+C9+1)-GAMMALN($B$3+$B$4-+C9+1))/(E$1*E$S3)/F9
6| LL -7130.7
7| i
[ 8 | X tx n #cust. L(.[X=x,t_x,n) P(alive in 1998) n-t_x-1 0 1 2 3
[ 9] 4 4 4 18/ -106.7 0.0027 0.92 -1, 0.0027 0 0 0 0
[10] 3 4 4 66 -368.0 0.0038 0.92 -1/ 0.0038 0 0 0 0
[11] 2 4 4 98 -463.5 0.0088 0.92 -1, 0.0088 0 0 0 0
[12] 1 4 4 216 -704.4 0.0384 0.92 -1, 0.0384 [ 0 0 0
[13] 3 3 4 34 -184.6 0.0044 0.79 0 0.0038 0.0006 0 0 0
[14] 2 3 4 180 -829.0, 0.0100 0.81 0 00088 0.0012 0 0 0
15| 1 3 4 292 -920.8 0.0427 0.82 0 00384 0.0043 0 0 0
[16] 2 2 4 64 -2835 0.0119 0.68 1 0.0088 0.0019 0.0012 0 0
[17] 1 2 4 342 -1033.4 0.0487 0.72 1 0.0384 0.0060 0.0043 0 0
[18] 1 1 4 302 -863.0 0.0574 0.61 2| 0.0384 0.0087 0.0060 0.0043 0
19 0 0 4 4482 -1373.9 0.7360 0.60 3 04785 0.0845 0.0686 0.0568 0.0476
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Conditional Expectations

A [ B [ ¢ [ o [ E T F TG T #H T 1 T o T ¥ [T Lt I M [ N T ©
[ 1] alpha 0.66 B(alpha,beta) 0.4751
2 beta 5.19
[3]| gamma 173.76 B(gamma,delta) 4.3E-260 =(EXP(GAMMALN($B$3-1)+GAMMALN ($B$4+C10+1)-GAMMALN($B$3+$B$4+C10))-
4] delta  1882.93 EXP(GAMMALN($B$3-1)+GAMMALN($B$4+C10+$B$5+1)-
5] n* 4 GAMMALN($B$3+$BS$4-+C10+$B$5)))*EXP(GAMMALN($B$1+A10+1)+
[6 | GAMMALN($B$2+C10-A10)-GAMMALN($B$1+$B$2+C10+1))/(E$1*E$3)/F10
[7] LL| -7130.7
e} i
(9] X tx! n # cust. L(.[X=x,t_x,n) E(X*|n*) n-t_x-1 0 1 2 3|
[10] 4 4 4 18 -106.67 0.00267 1.52 -1/ 0.00267 0 0 0 0|
[11] 3 4 4 66 -367.99 0.00379 1.20 -1/ 0.00379 0 0 0 0|
[12] 2 4 4 98  -463.46 0.00883 0.87 -1/ 0.00883 0 0 0 0|
[13] 1 4 4 216/ -704.36/ 0.03835 0.54 -1/ 0.03835 0 0 0 0|
[14] 3 3 4 34 -184.61 0.00438 1.08 0 0.00379| 0.000595 0 0 0|
[15] 2 3 4 180 -828.99 0.01000 0.77 0 0.00883| 0.001163 0 0 0|
16 1 3 4 292| -920.83  0.04270 0.49 0 0.03835| 0.004348 0 0 0|
[17] 2 2 4 64 -283.50 0.01192 0.64 1/ 0.00883 0.001921 0.001163 0 0|
[18] 1 2 4 342 -1033.39 0.04872 0.43 1/ 0.03835 0.006022 0.004348 0 0|
[19] 1 1 4 302 -863.02 0.05740 0.36 2 0.03835 0.008679 0.006022  0.004348 0|
20 0 0 4 4482 -1373.92 0.73599 0.14 3 0.47847  0.084486 0.068631 0.056783| 0.047618
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P(alive in 1998) as a Function of
Recency and Frequency

Year of Last Cruise
# Cruise-years 1997 1996 1995 1994 1993

4 0.92

3 092 0.79

2 0.92 0.81 0.68

1 092 082 0.72 0.61
0 0.60
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Posterior Mean of p as a Function of
Recency and Frequency

# Cruise-years

1997

Year of Last Cruise
1996 1995 1994 1993

4

3
2
1
0

0.47
0.37
0.27
0.17

0.38

0.27 0.28

0.17 0.18 0.19
0.08
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Expected # Transactions in 1998-2001
as a Function of Recency and Frequency

# Cruise-years

1997

Year of Last Cruise
1996 1995 1994 1993

4

3
2
1
0

1.52
1.20
0.87
0.54

1.03

0.77 0.64

0.49 043 0.36
0.14
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Expected # Transactions in 1998-2001
as a Function of Recency and Frequency

s. in 1998-2001)

E(# Tran:
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Computing DERT
- For a customer with purchase history (x, ty,n),

DERT (d | p, 0, alive at n)

P(Y; =1]|p,alive at t)P(alive att |t > n,0)
(1+d)t—m

o0

= 2

t=n+1
p(l-0)
d+ 0

- However, p and 0 are unobserved.
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Computing DERT

For a just-acquired customer (x = t, = n = 0),

DET(d |, B,y,0)

j J P29 10, B19(01y. ) dp ao

B ) o F1 (1, 6+1y+5+1,1+d)
a o<+B y+96 1+d '
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Computing DERT

For a customer with purchase history (x, ty,n), we
multiply DERT (d | p, 0, alive at n) by the probability
that he is alive at transaction opportunity n and
integrate over the posterior distribution of p and 6,
giving us

DERT(d| o, B,y,0,x,tx,n)
_Bla+x+1,+n—-x)B(y,0 +n+1)
B(e,B)B(y,6)(1 +4d)
»Fi1 (1,0 + n + 1; y+5+n+1,1+d)
L(o,B,y,0|x,tx,n)
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DET

A [ B [ ¢ [ b [ E T F [ H T 1T T K T L [ Mm [ N T O
| 1| alpha 0.66 B(alpha,beta) 0.4751
2]  beta  5.19
| 3 | gamma 173.76  B(gamma,delta) 4E-260 =EXP(GAMMALN($B$1+A11+1)+GAMMALN($B$2+C11-A11)-
| 4 | delta 1882.93 GAMMALN($B$1+$B$2+C11+1))*EXP(GAMMALN($B$3)+
15| GAMMALN($B$4+C11+1)-GAMMALN($BS$3+$B$4+C11+1))
1 6| d 0.1 annual discount rate *$K$24/(ES1"ES3*(1+$BS$6))/F11
7
8| LL -7130.7
19| i
| 10 | X tx n #cust. L(.[X=x,t_x,n) DET n-t_x-1 0 1 2 3
[11] 4 4 4 18 -106.7| 0.0027 2.35 -1, 0.0027 0 0 0 0
[12] 3 4 4 66 -368.0 0.0038 1.85 -1 0.0038 0 0 0 0
113] 2 4 4 98| -463.5 0.0088 1.34 -1, 0.0088 0 0 0 0
[ 14] 1 4 4 216 -704.4| 0.0384 0.84 -1, 0.0384 0 0 0 0
[15] 3 3 4 34| -184.6| 0.0044 1.60 0/ 0.0038 0.0006 0 0 0
[16] 2 3 4 180, -829.0 0.0100 1.19 0 0.0088 0.0012 0 0 0
117] 1 3 4 292 -920.8 0.0427 0.75 0/ 0.0384 0.0043 0 0 0
18] 2 2 4 64| -2835 0.0119 0.99 1 0.0088/ 0.0019| 0.0012 0 0
[19] 1 2 4 342 -1033.4 0.0487 0.66 1 0.03
Ed 1 1 4 302 -863.0 0.0574 0.56 2| 0.034 =M24*($K$25+L25-1)*($K$26+L25-1)
[21] 0 0 4] 4482 -1373.9 0.7360 0.22 =SUM(M24:M174) *$K$28/(($K$27+L25-1)*L25)
22
123 ] | i u_j
[ 24] 2F1 59757 0 1
[25] a 1 1 08325
26| b 1887.93 2 0.6930
[ 27] c 2061.69 3 05770
28] z 0.9091 4 0.4804
[29] 5 0.4000
30 6 0.3330
K O ———bee e BEeermoEms ]
[173] T T 129 22612
174 150 1.8E-12
391

DERT as a Function of R & F (d = 0.10)

DET(d=0.10)

Frequency (x)

1993

392

Recency (tx)




DERT as a Function of R & F (d = 0.10)

Year of Last Cruise
# Cruise-years 1997 1996 1995 1994 1993

4 2.35

3 1.85 1.60

2 1.34 1.19 0.99

1 0.84 0.75 0.66 0.56

0 0.22

393

Further Reading

Fader, Peter S., Bruce G.S. Hardie, and Paul D. Berger (2004),
“Customer-Base Analysis with Discrete-Time Transaction
Data.” <http://brucehardie.com/papers/020/>

Fader, Peter S., Bruce G.S. Hardie, and Paul D. Berger (2005),
“Implementing the BG/BB Model for Customer-Base Analysis
in Excel.” <http://brucehardie.com/notes/010/>
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Beyond the Basic Models

395

Implementation Issues

- Handling multiple cohorts
- treatment of acquisition
- consideration of cross-cohort dynamics

- Implication of data recording processes
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time —
1 N1 Nz N3 N1y
2 Moo  MNoj3 Noy
3 N33 N3y
I ny
ny ny; mng3 n;
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Implications of Data Recording Processes
(Contractual Settings)

Cohort Calendar Time — Cohort Calendar Time —
L npp nir L nn
2 nz2 ner 2 nz2
-1 nr-1,1-1 M-1,1 -1 nr-1,1-1
I nry 1 nyy
nip n2 ... nj-1 ni
Cohort Calendar Time — Cohort Calendar Time —
1 nir 1 nip-1 ng
2 nop 2 ner-1 n2r
-1 nr-1,1 -1 nr-1,1-1 N-1,1
1 nyy 1 nyy
ni no nr—1 nry
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Implications of Data Recording Processes
(Noncontractual Settings)

ID=1 >

ID=2 >

ID:3 >

ID=n >

Implications of Data Recording Processes
(Noncontractual Settings)

Period Period 1 Period 2
1 2 3 4
1 2 0 3 1
2 0 1 0 1
3 0 1 0 0
01 2 3 45 6 7+ 01 2 3 45 6 7+
n 1 0 0 2 Period 3 Period 4

01 2 3 45 67+ 01 2 3 45 67+
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Implications of Data Recording Processes
(Noncontractual Settings)

The model likelihood function must match the data
structure:

- Interval-censored individual-level data

Fader, Peter S. and Bruce G.S. Hardie (2005), “Implementing
the Pareto/NBD Model Given Interval-Censored Data .”
<http://brucehardie.com/notes/011/>

- Period-by-period histograms (RCSS)

Fader, Peter S., Bruce G. S. Hardie, and Kinshuk Jerath (2006),
“Estimating CLV Using Aggregated Data: The Tuscan Lifestyles
Case Revisited .”
<http://brucehardie.com/papers/024/>
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Model Extensions

- Duration dependence
- individual customer lifetimes
- interpurchase times

- Nonstationarity

- Covariates
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Individual-Level Duration Dependence

- The exponential distribution is often characterized
as being “memoryless”.

- This means the probability that the event of interest
occurs in the interval (t,t + At] given that it has not
occurred by t is independent of t:

Pt<T<t+At)|T>t)=1-e M,

- This is equivalent to a constant hazard function.

403

The Weibull Distribution

- A generalization of the exponential distribution that
can have an increasing and decreasing hazard
function:

Ft)=1—-e M A,c>0
h(t) = cAtc™!

where c is the “shape” parameter and A is the
“scale” parameter.

- Collapses to the exponential when ¢ = 1.

- F(t) is S-shaped for ¢ > 1.
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The Weibull Hazard Function

h(t)

h(t) = cAtc!

- Decreasing hazard function (negative duration dependence)
when ¢ < 1.

- Increasing hazard function (positive duration dependence)
when ¢ > 1.
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Individual-Level Duration Dependence

- Assuming Weibull-distributed individual lifetimes
and gamma heterogeneity in A gives us the Weibull-
gamma distribution, with survivor function

stineo- (&)

- DERL for a customer with tenure s is computed by

solving
J"" ((x + SC>T S(ts)
e dt
s o+ L€

using standard numerical integration techniques.
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Individual-Level Duration Dependence

- In a discrete-time setting, we have the discrete
Weibull distribution:

S(t]0,c)=(1-06)F.

- Assuming heterogeneity in € follows a beta
distribution with parameters («, ), we arrive at the
beta-discrete-Weibull (BAW) distribution with
survivor function:

1
S(tla,B,c) = L St|10,c)g(0@|«, B)dd

_ B, B+t°)
~ B(«,B)

407

Nonstationarity

- “Buy then die” < latent characteristics governing
purchasing are constant then become 0.

- Perhaps more realistic to assume that these latent
characteristics can change over time.

- Nonstationarity can be handled using a hidden
Markov model

Netzer, Oded, James Lattin, and V. Srinivasan (2005), “A Hidden
Markov Model of Customer Relationship Dynamics,” working paper,
Columbia Business School.

or a (dynamic) changepoint model

Fader, Peter S., Bruce G.S. Hardie, and Chun-Yao Huang (2004), “A
Dynamic Changepoint Model for New Product Sales Forecasting,”
Marketing Science, 23 (Winter), 50-65.
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Covariates
Types of covariates:

- customer characteristics
- customer attitudes and behavior
- marketing activities

Handling covariate effects:

- explicit integration (via latent characteristics and hazard
functions)

Schweidel, David A., Peter S. Fader, and Eric Bradlow (2006), “Modeling Service
Retention Within and Across Cohorts under Limited Information.”
<http://papers.ssrn.com/sol3/papers.cfm?abstract_id=742884>

- used to create segments (and apply no-covariate models)

Need to be wary of endogeneity bias and sample
selection effects
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The Cost of Model Extensions

No closed-form likelihood functions; need to resort
to simulation methods.

Need full datasets; summaries (e.g., RFM) no longer
sufficient.
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Philosophy of Model Building
- Keep it as simple as possible

- Minimize cost of implementation

- use of readily available software (e.g., Excel)

- use of data summaries

- Purposively ignore the effects of covariates
(customer descriptors and marketing activities) so

as to highlight the important underlying
components of buyer behavior.
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Central Tenet

Traditional approach
future = f(past)

Past : Future

latent
characteristics

(0)

Probability modelling approach
0 = f(past) — future = £(0)
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Classifying Customer Bases

Continuous

Opportunities for
Transactions

Discrete

Grocery purchases
Doctor visits

Hotel stays

Credit card
Student mealplan

Mobile phone usage

Event attendance
Prescription refills

Charity fund drives

Magazine subs
Insurance policy

Health club m’ship

Noncontractual
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Contractual

Type of Relationship With Customers




