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Customer-Base Analysis

Faced with a customer transaction database, we may
wish to determine

- which customers are most likely to be active in the
future,

- the level of transactions we could expect in future
periods from those on the customer list, both
individually and collectively, and

- individual customer lifetime value (CLV).



Classifying Customer Bases

- It is important to distinguish between contractual
and noncontractual settings:

- In a contractual setting, we observe the time at
customers become inactive.

- In a noncontractual setting, the time at which a
customer becomes inactive is unobserved.

- The challenge of noncontractual markets:

How do we differentiate between those customers
who have ended their relationship with the firm
versus those who are simply in the midst of a long
hiatus between transactions?

Setting the Stage:
Comparison of Modelling Approaches

Traditional approach
future = f(past)

Past Future

L latent traits J

(0)

Probability modelling approach
0 = f(past) — future = f(0)
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Part 1
Review of Probability Models



The Logic of Probability Models

- Many researchers attempt to describe/predict
behavior using observed variables.

- However, they still use random components in
recognition that not all factors are included in the
model.

- We treat behavior as if it were “random”
(probabilistic, stochastic).

- We propose a model of individual-level behavior
which is “summed” across heterogeneous
individuals to obtain a model of aggregate behavior.

Building a Probability Model

(i) Determine the marketing decision problem/
information needed.

(i) Identify the observable individual-level behavior
of interest.
- We denote this by x.
(iii) Select a probability distribution that
characterizes this individual-level behavior.
- This is denoted by f(x|0).

- We view the parameters of this distribution
as individual-level latent traits.



Building a Probability Model

(iv) Specify a distribution to characterize the
distribution of the latent trait variable(s) across
the population.

- We denote this by g(0).

- This is often called the mixing distribution.

(v) Derive the corresponding aggregate or observed
distribution for the behavior of interest:

Flx) = jf(xw)g(e)de

Building a Probability Model

(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.

(vii) Use the model to solve the marketing decision
problem/provide the required information.
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“Classes” of Models
- We focus on three fundamental behavioral
processes:
- Timing — “when”
- Counting — “how many”
- “Choice” — “whether/which”

- Our toolkit contains simple models for each
behavioral process.

- More complex behavioral phenomena can be
captured by combining models from each of these
processes.
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Individual-level Building Blocks

Count data arise from asking the question, “How
many?”. As such, they are non-negative integers with no
upper limit.

Let the random variable X be a count variable:
X is distributed Poisson with mean A if

AXe—A
x!

P(X=x]|A) = , x=0,1,2,...
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Individual-level Building Blocks

Timing (or duration) data are generated by answering
“when” and “how long” questions, asked with regards to
a specific event of interest.

The models we develop for timing data are also
used to model other non-negative continuous
quantities (e.g., transaction value).

Let the random variable T be a timing variable:

T is distributed exponential with rate parameter A if

F(t|AD)=P(T<t|A)=1-e,t>0.
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Individual-level Building Blocks

A Bernoulli trial is a probabilistic experiment in which
there are two possible outcomes, ‘success’ (or ‘1’) and
‘failure’ (or ‘0’), where p is the probability of success.

Repeated Bernoulli trials lead to the geometric
and binomial distributions.
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Individual-level Building Blocks

Let the random variable X be the number of
independent and identically distributed Bernoulli trials
required until the first success:

X is a (shifted) geometric random variable, where

PX=x|p)=p(l-p)* ", x=1,23,...

The (shifted) geometric distribution can be used to
model either omitted-zero class count data or discrete-
time timing data.
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Individual-level Building Blocks

Let the random variable X be the total number of
successes occurring in n independent and identically
distributed Bernoulli trials:

X is distributed binomial with parameter p, where
n _
P(X:X|n,10):<X>px(1—p)nx,XZO,l,Z,...,n.

We use the binomial distribution to model repeated
choice data — answers to the question, “How many
times did a particular outcome occur in a fixed number
of events?”
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Capturing Heterogeneity in Latent Traits

The gamma distribution:

o(rAr—le—txA
gAlr,x) = T , A>0

- T'(+) is the gamma function
- v is the “shape” parameter and « is the “scale”

parameter

- The gamma distribution is a flexible (unimodal)
distribution ... and is mathematically convenient.
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Illustrative Gamma Density Functions
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Capturing Heterogeneity in Latent Traits
The beta distribution:

p(x—l(l _ p)ﬁ—l
B(o, B)
- B(«&, B) is the beta function, which can be expressed
in terms of gamma functions:

T (o)T(B)
 T(x+ B)

gpla,pB) = ,0<p<1.

B(«x, B)

- The beta distribution is a flexible distribution ... and
is mathematically convenient
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Illustrative Beta Density Functions
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The Negative Binomial Distribution (NBD)

- The individual-level behavior of interest can be
characterized by the Poisson distribution when the
mean A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

P(X:xlr,tx):JOOP(X:xI/\)g(Alr,(x)dA
0
_T(r +x) x \" 1 \*
- T(r)x! ((x+1> ((x+1> '
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The Exponential-Gamma Model
(Pareto Distribution of the Second Kind)

- The individual-level behavior of interest can be

characterized by the exponential distribution when
the rate parameter A is known.

- We do not observe an individual’s A but assume it is
distributed across the population according to a
gamma distribution.

F(t|r,x) = JOOOF(tIA)g(AIV,a)dA

”
()
X+t
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The Beta-Geometric Model

- The individual-level behavior of interest can be
characterized by the (shifted) geometric distribution
when the parameter p is known.

- We do not observe an individual’s p but assume it is
distributed across the population according to a
beta distribution.

1
P(X =x|xB) =LP(X=x|v)g(v|0<,B)dv

_Bla+1,B+x—-1)
- B(«&, B)
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The Beta-Binomial Distribution

- The individual-level behavior of interest can be
characterized by the binomial distribution when the
parameter p is known.

- We do not observe an individual’s p but assume it is
distributed across the population according to a
beta distribution.

1
P(X = x |n, & B) =j0P<X=x|n,;o>g(p|o<,ﬁ)d;o

_(n\Blx+x,B+n—Xx)
C\x B(x, B) '
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Integrated Models
- Counting + Timing
- catalog purchases (purchasing | “alive” & “death” process)

- “stickiness” (# visits & duration/visit)

- Counting + Counting

- purchase volume (# transactions & units/transaction)

- page views/month (# visits & pages/visit)

- Counting + Choice

- brand purchasing (category purchasing & brand choice)

- “conversion” behavior (# visits & buy/not-buy)
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A Template for Integrated Models

Stage 2

Counting Timing Choice

Counting

Stage 1 Timing

Choice
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Integrated Models

- The observed behavior is a function of
sub-processes that are typically unobserved:

f(x101,02) = g(fi(x1101), f2(x2107).

- Solving the integral

Flx) = j F(x161,05)91(01)g2(62) d6, d6,

often results in an expression that contains the
Gaussian hypergeometric function, »F; (a, b;c; z).
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The Gaussian Hypergeometric Function

Z T(a+ HI(b+j)z
T T(a )r b) I'(c +j) J

°Fi(a,b;c;z)

Easy to compute, albeit tedious, in Excel as
oFi(a,b;c;z) = > u;j

using the recursion

uj (a+j-1Hb+j-1)
Uj_q (c+j—-1)j

z,j=1,2,3,...
where ug = 1.
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Part 2
Models for Noncontractual Settings

29

Setting
- New customers at CDNOW, 1/97-3/97

- Systematic sample (1/10) drawn from panel of
23,570 new customers

- 39-week calibration period

- 39-week forecasting (holdout) period

30



Purchase Histories

ID = 0001 >
ID = 0002 ¢ >
ID=1178 >
ID=1179 >
ID = 2356 >
ID = 2357 >

Week 0 Week 39
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Raw Data
A | B [ cC
1 ID X T
2 0001 2 38.86
3 0002 1 38.86
4 0003 0 38.86
5 0004 0 38.86
6 0005 0 38.86
7 0006 7 38.86
8 0007 1 38.86
9 0008 0 38.86
10 0009 2 38.86
11 0010 0 38.86
12 0011 5 38.86
13 0012 0 38.86
14 0013 0 38.86
15 0014 0 38.86
16 0015 0 38.86
17 0016 0 38.86
18 0017 10 38.86
19 0018 1 38.86
20 ) o010 3 3871
1178 1177 0 32.71
1179 1178 1 32.71
1180 1179 0 32.71
1181 1180 0 _ 3271
2356 2355 0 27.00
2357 2356 4 27.00
2358 2357 0 27.00
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Cumulative Repeat Transactions

3000 ~

2000 -

# transactions

1000

Week
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Modelling Objective

Given this customer database, we wish to determine the
level of transactions that should be expected in next
period (e.g., 39 weeks) by those on the customer list,
both individually and collectively.
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Modelling the Transaction Stream

- A customer purchases “randomly” with an average
transaction rate A

- Transaction rates vary across customers

35

Modelling the Transaction Stream

- Let the random variable X (t) denote the number of
transactions in a period of length t time units.

- At the individual-level, X (t) is assumed to be
distributed Poisson with mean At:

(At)xe_At

P(X(t) =x|A) = por

- Transaction rates (A) are distributed across the
population according to a gamma distribution:

o(rAr—le—(xA
I'(r)

g(A) =
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Modelling the Transaction Stream

The distribution of transactions for a randomly-chosen
individual is given by:

P(X(t) =x) = Jo P(X(t) =x|A) g(A) dA

N 1HIET(/VJ;;C!) ((x(j(r t)r ((Xit)x ’

which is the negative binomial distribution (NBD).
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Frequency of Repeat Transactions

1500
Hl Actual
[_1 NBD
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Fre:

500 -

A | H IH lsﬂ B om m W

0 1

Transac tions
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# transactions

# transactions

Tracking Cumulative Repeat Transactions

6000 -

— Actual

4000 -

2000 H

Week

39

Tracking Weekly Repeat Transactions

150
—— Actual

100 -

50

Week
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Conditional Expectations

- We are interested in computing E (Y (t)|data), the
expected number of transactions in an adjacent
period (T, T + t], conditional on the observed
purchase history.

- For the NBD, a straight-forward application of
Bayes’ theorem gives us

E(Y()IX(T) = x) = (’;1";) {

41

Conditional Expectations

10

T T T T T T T T

— Actual

~0- NBD o
ol i

Expected # Transactions in Weeks 40-78

# Transactions in Weeks 1-39
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Cust. A

Cust. B

Week 0

Conditional Expectations

Week 7 Week 39

According to the NBD model:

# transactions

Cust. A: E[Y(39)|X(32) = 4] = 3.88

Cust. B:

E[Y(39)|X(32) =4] = ?
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Tracking Cumulative Repeat Transactions

6000 -

4000 -

2000 H

—— Actual
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Towards a More Realistic Model

Total

# transactions

Time
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Modelling the Transaction Stream
Transaction Process:

- While active, a customer purchases “randomly”
around his mean transaction rate

- Transaction rates vary across customers
Dropout Process:
- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers
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The Pareto/NBD Model
(Schmittlein, Morrison and Colombo 1987)

Transaction Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, ).

Dropout Process:

- Each customer has an unobserved “lifetime” of length T,
which is distributed exponential with dropout rate p.

- Heterogeneity in dropout rates across customers is
distributed gammalfs, B).
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Summarizing Purchase Histories

- Given the model assumptions, we do not require
information on when each of the x transactions
occurred.

- The only customer-level information required by
this model is recency and frequency.

- The notation used to represent this information is
(X = x,ty, T), where x is the number of transactions
observed in the time interval (0, T'] and £,

(0 < ty < T)is the time of the last transaction.
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Purchase Histories

ID = 0001

ID = 0002 ¢

ID=1178

ID=1179

ID = 2356

ID = 2357
Week 0

49
Raw Data
A B | cC D
1 ID X t_Xx T
2 0001 2 3043 38.86
3 0002 1 1.71 38.86
4 0003 0 0.00 38.86
5 0004 0 0.00 38.86
6 0005 0 0.00 38.86
7 0006 7 29.43 38.86
8 0007 1 5.00 38.86
9 0008 0 0.00 38.86
10 0009 2 35.71 38.86
11 0010 0 0.00 38.86
12 0011 5 24.43 38.86
13 0012 0 0.00 38.86
14 0013 0 0.00 38.86
15 0014 0 0.00 38.86
16 0015 0 0.00 38.86
17 0016 0 0.00 38.86
18 0017 10 34.14 38.86
19 0018 1 4.86 38.86
20| _ 0019 3 _2829 3871
1178 1177 0 0.00 3271
1179 1178 1 8.86 3271
1180 1179 0 0.00 3271
1181l _ 1180 | 0 ___000 __3271
2356 2355 0 0.00 27.00
2357 2356 4 26.57 27.00
2358 2357 0 0.00 27.00
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Pareto/NBD Likelihood Function

For a randomly-chosen individual with purchase history
(X = xa tX! T)!
L(r,o,s,B|1X =x,tx,T)

e ()

where
x=p: Ao=W2F1(7+s+x,s+l;r+s+x+1;O‘z‘;ti)
_W2F1(7+s+x,5+1;r+s+x+1;%)
x=p: A0=MZF1(7+S+X,T+X;T+S+X+1;£+t°;)
_M2F1(7+5+x,r+x;r+s+x+1;£+$).
51
Key Results

P(“active” | X = x,ty, T)

The probability that an individual with observed
behavior (X = x,ty, T) is still “active” at time T.

E(Y(t) | X =x,tx,T)

The expected number of transactions in the
future period (T, T + t] for an individual with
observed behavior (X = x,t,, T).
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Frequency of Repeat Transactions

1500

T T T T T T T
— Hl Actual
[ Pareto/NBD

1000 -

Frequency

500 -

A A | IH I 0w = N

6

# Transactions
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Tracking Cumulative Repeat Transactions

5000 |
—— Actual \
4000 - - - - Pareto/NBD ‘ ’/,f”
\
S 3000 A \
g
3
c
I
5 2000 \
F*
\
/
1000 7 \
#
’ \
0 |
0 13 26 39 52 65 78
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Tracking Weekly Repeat Transactions

# transactions

Expected # Transactions in Weeks 40-78

150 4 |
| — Actual
| - - - Pareto/NBD
100 1 :
N \
504 |/ > | -V |
| \ AN
A \
0 T T 1 T T 1
0 13 26 39 52 65 78
Week
55
Conditional Expectations
7
—#— Pareto/NBD
61 i

# Transactions in Weeks 1-39
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Proportions of Active Customers

P(active)
o
(%)

Empirical
— * — Pareto/NBD
Il Il

Il Il Il Il Il Il
0 1 2 3 4 5 6 7+
# Transactions in Weeks 1-39
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Computing CLV

CLV is the present value of the future cashflows
associated with the customer

The general formula for computing CLV is

E(CLV) = J: v(t)St)d(t)dt,

where v(t) = customer’s net cashflow at t
S(t) = probability the customer is alive at £
d(t) = discount factor att
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Computing CLV

If we assume that an individual’s spend per transaction
is constant,

v (t) = net cashflow /transaction X t(t)
where t(t) is the transaction rate at t.

= E(CLV) = E(net cashflow / transaction)

X Jwt(t)S(t)d(t)dt.
L O J

DET
DET is the present value of the expected number of
future transactions (discounted expected transactions).

59

Computing DET
- For Poisson purchasing and exponential lifetimes
with continuous compounding at rate of interest 6,
DET(S | A, u) = J Ae Htemotgt
0

A
u+d

... but A and p are unobserved.

- Standing at time T, we wish to compute the present
value of the expected future transaction stream for
a customer with purchase history (X = x,t,, T),
with continuous compounding at rate of interest 6.
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Computing DET

DET (O |7v,0,8,B, X =x,tx,T)

- J J {DET(5| A, 1)
0 0
X P(“active” at T | A, u, X = x,tyx, T)
X g 17,05, B,X = X, tx, T) [ dAdp

XTI IT(r + x + 1)Y(s,5;0(B+T))
T+ T) >+ 1L(r, e, 8, B X = x,ty, T)

where Y (-) is the confluent hypergeometric function of
the second kind.
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DET as a Function of Recency and Frequency

DET (discounted expected trans.)
s 2R N N W oW B
B O (5] o (5] o (5] o (5 o
©
o
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Iso-Value Representation of DET

14

12

| (\

0 10 20 30 40 50 60 70 80
Recency (t )

Frequency (x)
©

)
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The “Increasing Frequency” Paradox

Cust. A ¢ .

Cust. B 4 >

Week 0 Week 78

DET
Cust. A 4.6
Cust.B 1.9
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Key Contribution

- We are able to generate forward-looking estimates
of DET as a function of recency and frequency in a
noncontractual setting:

DET = f(R,F)

- Adding a sub-model for spend per transaction
enables us to generate forward-looking estimates of
CLV as a function of RFM in a noncontractual
setting:

CLV = f(R,F,M) = DET X g(F,M)
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An Alternative to the Pareto/NBD Model

- Estimation of model parameters can be a barrier to
Pareto/NBD model implementation

- Recall the dropout process story:
- Each customer has an unobserved “lifetime”

- Dropout rates vary across customers

- Let us consider an alternative story:

- After any transaction, a customer tosses a coin
heads — become inactive
tails — remain active

- P(heads) varies across customers
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The BG/NBD Model
(Fader, Hardie and Lee 2005c)

Purchase Process:

- While active, # transactions made by a customer follows a
Poisson process with transaction rate A.

- Heterogeneity in transaction rates across customers is
distributed gamma(r, x).

Dropout Process:

- After any transaction, a customer becomes inactive with
probability p.

- Heterogeneity in dropout probabilities across customers is
distributed beta(a, b).
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BG/NBD Likelihood Function

For a randomly-chosen individual with purchase history
(X = xl tX! T)!

L(T! O(’asb|X = x’tX!T) = Al ) A2 ' (A3 + 6X>OA4)

where A T(r +x)"
YT
I'la+b)I'(b+ x)
Ao =

CIT(W)I(a+Db+x)

As = (O(iT>r+x




BGNBD Estimation

A | B | ¢ | o J e | ¢ | ¢ | H I

[ 0.243

2 |alpha 4.414 |=GAMMALN(B$1+B8)- =IF(B8>0,LN(B$3)-LN(B$4+B8-1)-
3 la 0.703 |GAMMALN(B$1)+B$1*LN(B$2) (B$1+B8)*LN(B$2+C8),0)

4 |b 2.426

5 |LL 9582.4 \ | =-(B$1+B8)"LN(B$2+D8) | ¢

6

7 ID X t X T In(.) In(A_1) In(A_2) ¢ In(A_3) In(A_4)
8 0001 2 3043 3886, -9.4596 -0.8390 _ -0.4910 ' -8.4489  -9.4265
9 0002 1 171 38 44711 -1.05 -0.2828 -4.6814 -3.3709
10 0.00 6.86 -0.5538 4602 0.0000 -0.9140  0.0000
11 0004 0 0.00 ~ 3886 -05538. 03602  0.0000 -0.9140  0.0000
12 cead o acoa = o 00
15 | =F8rGB+LN(EXP(HE)HBE>0)EXP(8)) | | —GAMMALN(BS3+BS4)+GAMMALN(BS4+BS)- bog
14 0007 1 5.00 38.86 GAMMALN(B$4)-GAMMALN(B$3+B%$4+B8) 43
15 0008 0 000  38.86 - , . : -

16 0009 2 3571 3886 -9.5367 -0.8390 -0.4910 -8.4480 -9.7432
7| o010 _ 0___000 3386 05533 _ 03602 _ 00000 _-0.9140 _ 00000
2362 2355 0 000~ 27.00] -0.4761] _ 0.3602 ~ 0.0000 -0.8363 _ 0.0000
2363 2356 4 2657 27.00 -14.1284  1.1450 -0.7922 -14.6252 -16.4902
2364 2357 0 0.00  27.00 -0.4761  0.3602  0.0000 -0.8363  0.0000
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Frequency of Repeat Transactions

1500 T

T
Hl Actual
[ BG/NBD
[] Pareto/NBD

1000 - q

Frequency

500 - q

0 1 2 3 4 5 6 7+
# Transactions

70




Tracking Cumulative Repeat Transactions

5000

4500

4000 -

3500

3000 -
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1500 -

1000 -
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Tracking Weekly Repeat Transactions

150 T
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|
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|
|
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Conditional Expectations

T
— Actual
—<— BG/NBD
—&— Pareto/NBD

Expected # Transactions in Weeks 40-78

# Transactions in Weeks 1-39
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Modelling the Transaction Stream

How valid is the assumption of Poisson
purchasing?

— can transactions occur at any point in
time?
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“Discrete-Time” Transaction Opportunities

“necessarily discrete” attendance at weekly church service
! attendance at annual arts festival

charity donations

“generally discrete” )
blood donations

discretized by
recording process

cruise ship vacations

77

“Discrete-Time” Transaction Data
A transaction opportunity is

- a well-defined point in time at which a transaction
either occurs or does not occur, or

- a well-defined time interval during which a (single)
transaction either occurs or does not occur.

— acustomer’s transaction history can be expressed
as a binary string:

v = 1 if a transaction occurred at/during the tth
transaction opportunity, O otherwise.
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Repeat Purchasing for Luxury Cruises
(Berger, Weinberg, and Hanna 2003)

1993 1994 1995 1996 1997 1994 1995 1996 1997 # Customers

Y > Y > Y > Y > Y 18
L—> N 34
— N Y 36
_I:: N 64
N—T>Y Y 14
_[:: N 62
—~ N Y 18
_[:: N 302
— N Y T>Y Y
T
—~ N Y
—[:N
N—TY Y
T
— N Y
—[:N

118
36
342
44
292
216
4482

S O O O F = = = O O O O F = = =
SO O P O O R = O O = K= OO =

1
0
1
0
1
0
1
0
1 16
0
1
0
1
0
1
0

O O 0 0 OO OO s e e
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Research Objectives

- Develop a model of buyer behavior for discrete-
time, noncontractual settings.

- Derive expressions for quantities such as

— the probability that an individual is still “alive”

- the present value of the expected number of
future transactions (DET — CLV calculations)

conditional on an individual’s observed behavior.

- Complete implementation within Microsoft Excel.
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Model Development

A customer’s relationship with a firm has two phases:
he is “alive” (A) for some period of time, then becomes
permanently inactive (“dies”, D).

- While “alive”, the customer buys at any given transaction
opportunity (i.e., period t) with probability p:

P(Y; =1]|p,aliveatt) =p

- A “living” customer becomes inactive at the beginning of a
transaction opportunity (i.e., period t) with probability 0

= P(alive at t|0) = P(AA...A|0) = (1 — 0)!
t
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Model Development
Whatis P(Y;1=1,Y,=0,Y3=1,Y,=0,Y5 =0 p, 0)?
- Three scenarios give rise to Y, = 0,Y5 = O:

Alive?

t=1 t=2 t=3|t=4 t=5

i A A A D D
i) A A A A D
i) A A A A A

- The customer must have been alive fort=1, 2, 3
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Model Development

We compute the probability of the purchase string
conditional on each scenario and multiply it by the
probability of that scenario:

_ _ _ 3
f(10100|p,0) =p(1 -p)p (1 -0)°0
P(AAADD)

+p(1-p)p(l-p)(1-0)0

P(AAAAD)
_ _ _ 9y
+p(1-p)pd-p)1-p)(1-0)
P(Y1=1,Y2=0,Y3=1) P(AAAAA)
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Model Development

- Bernoulii purchasing while alive = the order of a
given number of transactions (prior to the last
observed transaction) doesn’t matter

- For example, f(10100|p,0) = (01100 | p, 0)

- Recency (time of last transaction, m) and frequency

(number of transactions, x = >;' ; ;) are sufficient
summary statistics

—> we do not need the complete binary string
representation of a customer’s transaction
history
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Repeat Purchasing for Luxury Cruises

1994 1995 1996 1997 # Customers

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

O O O O O O OO R e
O O O O H = H H O O O O F = =
O O = O O O O OO -

18
34
36
64
14
62
18
302
16
118
36
342
44
292
216
4482
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Model Development

n
4
4
4
4
4
4
4
4
4
4
4

# Customers
18
66
98

216
34
180
292
64
342
302
4482

For a customer with purchase history (X = x,m,n),

Lp,0|X=xmmn)=p*1Q-p)" 1 -0)"

n-m-—1

+ Z pX(l _ p)mfxﬂ’g(l _ 9)m+i
i=0

We assume that heterogeneity in p and 0 across
customers is captured by beta distributions:

g(p|0"B) =

g0ly,0) =

p(xfl(l _ p)B*l

B(x, B)

gyfl (1 _ 9)571
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Model Development
Removing the conditioning on the latent traits p and 6,

L(,B,y,01 X =x,m,n)

1 1
- Jo Jo Lp,01X =x,m,n)g(p| o, B)g(01y,5) dp do

_ Bla+x,B+n—x)B(y,0 +n)
- B(«x, B) B(y,9)

+n_§_1B(a+x,B+m—x+i)B(y+1,6+m+i)
i=0

B(«x, B) B(y,d)

... which is (relatively) easy to code-up in Excel.
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BGBB Estimation

A [ B ] ¢c I b [ EJT F T T HT 1T 37T KT L M
| 1| alpha 0.66 B(alpha,beta) 0.4751
| 2 | beta 5.19
| 3 | gamma 173.76 B(gamma,delta) 4E-260
| 4 | delta 1882.93
5]
| 6 | LL -7130.7
7] i
| 8| X m n  #cust. L(.[X=x,m,n) n-m-1 0 1 2 3
| 9| 4 4 4 18 -106.7 0.0027 -1 0.0027 0 0 0 0
| 10 | 3 4 4 66 -368.0 0.0038 -1/ 0.0038 0 0 0 0
| 11 | 2 4 4 98 -463.5 0.0088 -1 0.0088 0 0 0 0
[12] 1 4 4 216 -704.4 0.0384 -1/ 0.0384 0 0 0 0
|13 ] 3 3 4 34 -184.6 0.0044 0/ 0.0038 0.0006 0 0 0
| 14 | 2 3 4 180 -829.0/ 0.0100 0 0.0088 0.0012 0 0 0
| 15 | 1 3 4 292 -920.8| 0.0427 0 0.0384 0.0043 0 0 0
| 16 | 2 2 4 64 -2835 0.0119 1 0.0088 0.0019 0.0012 0 0
117 ] 1 2 4 342 -1033.4) 0.0487 1 0.0384 0.0060 0.0043 0 0
118 | 1 1 4 302 -863.0/ 0.0574 2 0.0384 0.0087 0.0060 0.0043 0
19 0 0 4 4482 -1373.9 0.7360 3 04785 0.0845 0.0686 0.0568 0.0476
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BGBB Estimation

A [ B ] ¢c I b [ E T F T T HT 1T 37T K T[T L M

1 alpha 0.66 B(alpha,beta) 0.4751 - -
51 bem 519 ~— =EXP(GAMMALN(B1)+GAMMALN(B2)-GAMMALN(B1+B2)) |
| 3 | garima é;g';g B(gamma,delta) 4E-260 ™ _pyp(GAMMALN($B$1+A9)+GAMMALN($B$2+CO-A9)-
% clta) 1882, GAMMALN($B$1+$B$2+C9))/SEST*EXP(GAMMALN ($B$3)+
= AMMALN($B$4+C9)-GAMMALN($B$3+$B$4+ E

6 LL -7130.7 =SUM(E9:E19) ¢ ($B54+C9)-G ($B93+9B84+C9))/SESS

7 i

8 X m n #cust. L(.|X=x,m,n) n-m-1 0 1 2 3
9 4 4 4 18 -106.7| 0.0027 -1 0.0027 0 0 0 0
0] 3 i i 66| 2200l 0 anna i nonoel 7" o o o 0
1 2 2 2 o8 | =IF($H9<J$8,0,EXP(GAMMALN($BS$1+$A9)+GAMMALN($B$2+$B9-$A9+J$8)- |
2] 1 4 2 216 GAMMALN($B$1+$B$2+$B9+J$8))/SESI*EXP(GAMMALN($B$3+1)+ 0
3] 3 3 2 34| GAMMALN($B$4+$B9+I$8)-GAMMALN($BS3+$BS4+$B9+I$8+1))/$ES3) 0
14 2 3 4 180 -829.0 0.0100 0 0.0088 0.0012 0 0 0
15 1 3 4 292 -920.8 |=C15-B15-1 0 0.0384] 0.0043 0 0 0
16 2 2 4 64 -2835 0.0119 1 0.0088 0.0019 0.0012 0 0
17 1 2 4] =D19*LN(F19)) |4 0.0487 1/ 0.0384) 0.0060 0.0043 0 0
18 1 1 4 302§ -863.0, 0.0574 —SUM(19:M19) 0384 0.0087 00060 0.0043 0
19 0 0 4 4482 -1373.9 0.7360 4785 0.0845/ 0.0686 0.0568 0.0476

Model Fit

5000

Actual
[ BG/BB

4000

3000 -

Frequency

2000 -

1000 -

.\ i I
2 3

# Repeat Trip-Years

173.76,5 = 1882.93,LL = —7130.7)

N

(x=0.66,8=5.19,y
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Computing P(alive in period n + 1)

- According to Bayes’ theorem,

P(alive in 1 | data) = P(data | alive in n)P(alive in n)
P(data)

- Recalling the individual-level likelihood function,
Lip,0| X =x,mmn)=p*(1-p)"*(1-0)"

n-m-—1

+ Z pX(l _ p)m—xﬂ'@(l _ 9)m+i’
i=0

it follows that
P(alive in period n | X = x,m,n, p, 0)

=p*(1-p)" (1 - 9)"/L(;9,9|X =x,m,n)

91

Computing P(alive in period n + 1)
For a customer with purchase history (X = x,m,n),
P(alive in periodn+ 1| X =x,m,n,«,B,y,0)
= Ll Jol {P(alive inperiodn|X =x,m,n,p,0)(1 - 0)

xg(p,QlX=x,m,n,o<,B,y,5)}dpd9

_Bla+x,B+n—-x)B(y,6 +n+1)
- B, B)B(y,0) 108,781, m,m)

92



P(alive)

A | B [ c¢c [ D E [ F [ H T T T 9 T k[ ¢t T m T N T 0O
| 1| alpha 0.66 B(alpha,beta) 0.4751
| 2 | beta 5.19
| 3 | gamma| 173.76 B(gamma,delta) 4E-260 =EXP(GAMMALN($B$1+A9)+GAMMALN ($B$2+C9-A9)-
| 4| delta 1882.93 GAMMALN($B$1+$B$2+C9))*EXP(GAMMALN($B$3)+
L5 | GAMMALN($B$4+C9+1)-GAMMALN ($B$3+$B$4+C9+1))/(ES1*E$S3)/F9
16 LL -7130.7
L7 i
| 8 | X m n  #cust. L(.|X=x,m,n) P(alive in 1998) n-m-1 0 1 2 3
9| 4 4 4 18/ -106.7 0.0027 0.92 -1 0.0027 0 0 0 0
[ 10] 3 4 4 66 -368.0 0.0038 0.92 -1 0.0038 0 0 0 0
[11] 2 4 4 98| -463.5 0.0088 0.92 1 0.0088 0 0 0 0
[12] 1 4 4 216 -704.4 0.0384 0.92 -1 0.0384 0 0 0 0
[13] 3 3 4 34/ -184.6 0.0044 0.79 0/ 0.0038 0.0006 0 0 0
[14] 2 3 4 180 -829.0 0.0100 0.81 0/ 0.0088 0.0012 0 0 0
[15] 1 3 4 292 -920.8 0.0427 0.82 0/ 0.0384 0.0043 0 0 0
[ 16| 2 2 4 64/ -2835 0.0119 0.68 1 0.0088] 0.0019 0.0012 0 0
[17] 1 2 4 342 -1033.4 0.0487 0.72 1 0.0384] 0.0060 0.0043 0 0
[ 18] 1 1 4 302 -863.0 0.0574 0.61 2| 0.0384 0.0087| 0.0060 0.0043 0
19 0 0 4 4482 -13739 0.7360 0.60 3| 0.4785 0.0845 0.0686 0.0568 0.0476
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Computing CLV

CLV is the present value of the future cashflows

associated with the customer

The general formula for computing CLV is

E(CLV) = J: v(t)St)d(t)dt,

customer’s net cashflow at t

where v (t)
S(t)

d(t) discount factor at t

94

probability the customer is alive at t




Computing CLV

If we assume that an individual’s spend per transaction
is constant,

v (t) = net cashflow /transaction X t(t)
where t(t) is the transaction rate at t.

= E(CLV) = E(net cashflow / transaction)

X Jmt(t)S(t)d(t)dt.
L O J

DET
DET is the present value of the expected number of
future transactions (discounted expected transactions).
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Computing DET

- For a customer with purchase history (X = x, m,n),

DET (d | alive at n, p, 0)

o0

B Z P(Y; =1]|p,alive at t)P(alive at t |t > n,0)
B (1+d)t—n

t=n+1
_p(1-0)
d+ 0

- However, p and 0 are unobserved.
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Computing DET

For a just-acquired customer (x = m = n = 0),

DET(d| e, B,y, )

d+ 0

~ X 5 o F1 (1, 6+1y+6+1,1+d)
T \Na+B)\y+6 1+d ’

- JO 0 MQ(PI(X B)g(Oy,8) dpdo

where »F; (-) is the Gaussian hypergeometric function.
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Computing DET

For a customer with purchase history (X = x,m,n), we
have to integrate over the posterior distribution of p
and 0:

DET(d| X =x,m,n,« B,y,0)

:Jo O%g(lo Ol X=xmn,«p,y,0)dpdo

_Bla+x+1,+n—-x)B(y, 0 +n+1)

N B(c, B)B(y,6)(1 +d)
Fi(Ld+n+1Ly+8+n+ 1)

Lx,B,y, 0| X =x,m,n)
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The Gaussian Hypergeometric Function

2Fila,b;62) = 5T Tc+j) j!

T'(c) i T[(a+ j)T(b+j)z/
j=0
Easy to compute, albeit tedious, in Excel as

o)

oFi(a,b;c;z) = > uj
j=0

using the recursion
u;  (@a+j-DB+j-1)

= . . z,j=12,3,...
Uj (c+j—-1)J g
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DET
A [ B [ ¢c I opJ] E [ FJT eI H T 1T T 3T K[ I ™M]JNToO

| 1| alpha 0.66 B(alpha,beta) 0.4751
2| beta 519
| 3 | gamma 173.76  B(gamma,delta) 4E-260 =EXP(GAMMALN($B$1+A11+1)+GAMMALN($B$2+C11-A11)-
| 4 | delta 1882.93 GAMMALN($B$1+$B$2+C11+1))*EXP(GAMMALN($B$3)+
15| GAMMALN($B$4+C11+1)-GAMMALN($B$3+$B$4+C11+1))
1 6| d 0.1 annual discount rate *$K$24/(ESI*ES3*(1+$B$6))/F11

7
8| LL -7130.7
19| i
| 10 | X m n  #cust. L(.[X=x,m,n) DET n-m-1 0 1 2 3
11} 4 4 4 18 -106.7| 0.0027 2.35 -1 0.0027 0 0 0 0
[12] 3 4 4 66/ -368.0 0.0038 1.85 -1 0.0038 0 0 0 0
[13] 2 4 4 98| -463.5 0.0088 1.34 -1 0.0088 0 0 0 0
| 14] 1 4 4 216 -704.4 0.0384 0.84 -1 0.0384 0 0 0 0
[15] 3 3 4 34| -184.6| 0.0044 1.60 0/ 0.0038 0.0006 0 0 0
[16] 2 3 4 180 -829.0  0.0100 1.19 0/ 0.0088 0.0012 0 0 0
[17] 1 3 4 292 -920.8 0.0427 0.75 0 0.0384 0.0043 0 0 0
18] 2 2 4 64/ -2835 0.0119 0.99 1 0.0088 0.0019/ 0.0012 0 0
[19] 1 2 4 342 -1033.4| 0.0487 0.66 1 0.03
120 1 1 4 302 -863.0 0.0574 0.56 2| 0.03d =M24*($K$25+L25-1)*($K$26+L25-1)
|21 ] 0 0 4] 4482 -1373.9 0.7360 0.22 =SUM(M24:M174) *$K$28/(($K$27+L25-1)*L25)
122} ¥
| 23] i uj
[24] 2F1 59757 0 1 /
[25] a 1 1 08325
126 b| 1887.93 2| 0.6930
[27] c| 2061.69 3| 0.5770
| 28] z| 0.9091 4| 0.4804
[29] 5 0.4000

30 6 0.3330
EC I e S O A . | S
[173[ 149 22612

174 150 1.8E-12
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P(alive in 1998) as a Function of
Recency and Frequency

Year of Last Cruise

# Cruise-years 1997 1996 1995 1994 1993

4 0.92

3 0.92 0.79

2 092 0.81 0.68

1 092 0.82 0.72 0.61

0 0.60

101

Posterior Mean of p as a Function of
Recency and Frequency

Year of Last Cruise
# Cruise-years 1997 1996 1995 1994 1993

4 0.47

3 0.37 0.38

2 0.27 0.27 0.28

1 0.17 0.27 0.18 0.19

0 0.08
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Expected # Remaining Transactions
(DET for d = 0)

# Cruise-years

1997

Year of Last Cruise
1996 1995 1994 1993

4

S = N W

5.16
4.05
2.95
1.84

3.50

2.60 2.18

1.65 145 1.23
0.47
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Discounted Expected Transactions (DET)
at a 10% Annual Discount Rate (d = 0.10)

Year of Last Cruise

# Cruise-years 1997 1996 1995 1994 1993
4 2.35
3 1.85 1.60
2 1.34 1.19 0.99
1 0.84 0.75 0.66 0.56
0 0.22
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- See <http://brucehardie.com/papers/020/>
for a copy of the paper that develops the BG/BB
model.

- See <http://brucehardie.com/notes/010/> for
a note on how to implement the BG/BB model in
Excel, along with a copy of the associated
spreadsheet.
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Part 3
Models for Contractual Settings
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Contractual Settings

- Examples of contractual settings:

gym membership, cable TV, airport lounge,
cellular phone, theatre subscription, utilities,
credit card ...

- In contrast to noncontractual markets, we do know
when a customer ends their relationship with the
firm.

- Focus on retention (= 1 — churn).

107

Typical Contractual Setting

An analysis of our customer records yields the
following retention rates:

Years since acquisition 1 2 3 4 5

Retention rate 0.633 0.689 0.747 0.798 0.836

The retention rate for period t (7;) is defined as
the proportion of customers active at the end of
period t — 1 who are still active at the end of
period t.
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Motivating Questions
- How much should I spend on customer acquisition?

- How much is my existing customer base worth?

What is the expected (remaining) tenure of a
customer who has been with us for n years?

109

Computing CLV

Recall the general formula for computing CLV:

E(CLV) = Joo v(tH)S(t)d(t)dt.
0

Assuming an individual’s value at t is independent of
their tenure, we can factor it out of the calculation:

E(CLV) = E(net cashflow rate) x J St)d(t)dt.
0

DEL
DEL is the present value of the expected lifetime of the
customer (discounted expected lifetime).
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Computing DEL

Switching to a discrete-time formulation, we have

= S(t) < S
DEL, = Z T+ or DEL, _tzzl—(lﬂl)t

- DEL, feeds into the calculation of CLV for an
as-yet-to-be-acquired customer (excluding cost of
acquisition).

- DEL, feeds into the calculation of CLV for a
just-acquired customer; we ignore the first purchase
that identifies them as a new customer.

- Clearly DELy = DEL; + 1; we will focus on DEL;.
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Computing DEL

Given the relationship between retention rates and the
survivor function,

_ S T,
Tt—m@S(t)—Eﬂ,

it follows that

DEL(d) = i Hrid ()
t=1

i=1
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Implementation Questions

How do we project 7; beyond the set of observed
retention rates?

1.0 ~
e X — X = X = X
o x///X///x///k//)b ------- o o S
[V}
<
3 0.6
c
o
g 0.4 -
()
o
0.2 -
OO T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Period
113

Implementation Questions

How do we compute DEL for customers with an
observed tenure of 2 periods, DEL(d |n = 2)?

o X m X — =X
| /—‘ ~~~~~~ Ko w o Xmmm e 3w X
R
x" =
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Period

1 =13 =0.747, 75 = r4 = 0.798, etc.
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DEL(d = 0.1 | survived two years)

What is DEL for a customer with a two-year tenure
(assuming a 10% discount rate)?

Using the “shifted” observed retention rates
(r; =0.747, v, = 0.798, 5, = 0.836) gives us

00 t

DEL(d =0.1) = > | ]/} (1)
1

t=1 i=

=2.73
115
A | B C D E
1 DEL Year rt S(t) 1/(1+d)™t
2 2.73 1 0.747 0.747 0.909
3 ) 2 0.798 0.59 \  0.826
4 0 3 0.836 0.49p——0-251|
5 4 0836 041/ =P%C3 k3
6 5 0.836 0.348 0.621
7 6 0.81=1/(1.1)"B7 |- 0.564
8 | 7 0.836]  0.243 0.513
9 || =suMPRODUCT(D2:D101,E2:E101) |04 0.467
10 ) U050 u1/0 0.424
100 99" ~ 0.836 1.7E-08 8.0E-05|
101 100 0.836 1.4E-08 7.3E-05
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Why Do Retention Rates Increase Over Time?

Individual-level time dynamics (e.g., increasing
loyalty as the customer gains more experience
with the firm).

VS.

An artifact of cross-sectional heterogeneity.
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“The Ruse of Heterogeneity”

Suppose we track a cohort of 150,000 customers,
comprising two unobserved segments:

- Segment 1 comprises 50,000 customers, each with a
time-invariant annual retention probability of 0.9.

- Segment 2 comprises 100,000 customers, each with
a time-invariant annual retention probability of 0.5.
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The Ruse of Heterogeneity

# Active Customers a

Year Seg 1 Seg 2 Total Segl Seg?2 Total
0 50,000 100,000 150,000
1 45,000 50,000 95,000 0.900 0.500 0.633
2 40,500 25,000 65,500 0.900 0.500 0.689
3 36,450 12,500 48,950 0.900 0.500 0.747
4 32,805 6,250 39,055 0.900 0.500 0.798
5 29,525 3,125 32,650 0.900 0.500 0.836

119
The Ruse of Heterogeneity
1.0

Retention Rate

0.8

0.6

0.4

0.2

0.0

Segment 1

Segment 2
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DEL(d = 0.1 | survived two years)

- If this person belongs to segment 1:

00 t
DEL(d =0.1) = > {[10.9} (157)"

t=1 i=1
=4.50

- If this person belongs to segment 2:

00 t
DEL(d =0.1) = > 1 [10.5} (:557)"

= 0.833

- But to which segment does this person belong?
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DEL(d = 0.1 | survived two years)

According to Bayes’ theorem, the probability that this
person belongs to segment 1 is

P(survived two years | segment 1) X P(segment 1)
P (survived two years)
0.92 x 0.333

T 0.92%0.333 + 0.52 X 0.667
—0.618
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DEL(d = 0.1 | survived two years)

It follows that the discounted expected lifetime for an
individual with a tenure of two years is

DEL(d = 0.1 | survived two years)
= DEL(d = 0.1 | seg. 1)P(seg. 1 | survived two yrs)
+ DEL(d = 0.1 | seg. 2)P(seg. 2 | survived two yrs)
=4.5x0.618 + 0.833 x (1 —0.618)
= 3.10 (cf. 2.73 for naive approach)

123

Implications

To the extent that the observed retention dynamics may
be largely driven by heterogeneity, they are not
indicative of true individual-level behavior.

— any estimates of CLV for existing customers must
be based off a correct story of individual-level buyer
behavior that explicitly accounts for heterogeneity.
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A Discrete-Time Model for Contract Duration

1. An individual remains a customer of the firm with
constant retention probability 1 — 0
— the duration of the customer’s relationship
with the firm is characterized by the (shifted)
geometric distribution:

St|o)y=1-0)" t=1,2,3,...
2. Heterogeneity in 0 is captured by a beta distribution
with pdf

0x-1(1 — 9)B-1
B(«x, B)

fOla,B) =

125

A Discrete-Time Model for Contract Duration

- The probability that a customer cancels their
contract in period t

1
HTzﬂaﬁ%ijT=H9VWMx&d9

_Blx+1,B+t-1) B
= B(o, ) , t=1,2,...

- The aggregate survivor function is

1
ﬂﬂ%m=LﬂHmﬂmaﬁM0

_ B(x,B+t)

Bl B) t=1,2,...
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A Discrete-Time Model for Contract Duration

- The (aggregate) retention rate is given by

S
CS(t-1)

. B+t-1
x4+ B+t-1°

Tt

- This is an increasing function of time, even though
the underlying (unobserved) retention rates are
constant at the individual-level.
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Application

. Consider a cohort of 10,000 customers from which
4583 leave by the end of their first year, and 1752,
916, 560, 376, 269 in years 2-6 respectively.

- Fitting the sBG model to these data yields parameter
estimates of & = 1.10 and 8 = 1.30.
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A B | ¢ | b | E
1 |alpha 1.10 B(alpha,beta) 0.689
2 |beta 1.30
3
4 |LL -15521.8
5
6 Year # Cancelled P(cancel)
7 1 4583 0.458  -3575.7
8 2 1752 0.175 -3051.7
9 3 916 0.092  -2189.7
10 4 560 0.056 -1614.4
11 5 376 0.038  -1233.5
12 6 269 0.027 -972.2
13 0.154  -2884.6
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Simplified Parameter Estimation

For a single cohort with observed retention rates v, and
7>, the maximum likelihood estimators of « and S are:

& (1 =71)(1—=12)

(r2 —171)
~ (1l —12)

(12 —71)
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Retention Rate

Retention Rates

Retention Rate

Year #Inactive # Active Empirical Model
0 10000

1 4583 5417 0.542 0.542

2 1752 3665 0.677 0.677

3 916 2749 0.750 0.750

4 560 2189 0.796 0.796

5 376 1813 0.828 0.828

6 269 1544 0.852 0.851

7 0.869

8 0.883

9 0.894

10 0.904

11 0.911

12 0.918

13 0.924

14 0.929

15 0.933
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Retention Rates
1.0 q
0.8 -
0.6 -
0.4
0.2
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2 3 4 5 6 7 8 9 10 11 12 13 14 15
Year
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Computing DEL

- For a just-acquired customer,

e S(tle) <& (1-6
DEL(dW)_t:Zl(ler)t_t:Zl(ler

_1-0
d+0
- Removing the conditioning on 0,

11-0
_ B
(x+B)(1+4d)

XoF1 (1L, B+ 10+ B+ 1;1).

'
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Computing DEL

- Model-based DEL:

DEL(d=0.1lx=1.1,=1.3) =1.77

- Empirical DEL (where, for i > 6, ; = ¥5):

00 t

DEL(d = 0.1) = > 4 []7i} (7557)"
t=1 i=1

= 1.65

- Under-estimates true DEL by 7%.
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DEL Given Tenure of n Periods

What is DEL for a customer with a two-year tenure
(assuming a 10% discount rate)?

Using the “shifted” observed retention rates
(r{ =13 =0.750,1, =74 = 0.796, ..., ¥y, =
6. = 0.852) gives us

~

DEL(d = 0.1) —i{l_[ (1)

t=1 i=1

= 2.82

DEL Given Tenure of n Periods

- For a customer with a tenure of n periods,

S|t >mn;0)
(1+d)t-—n

S(t16)/S(n|o)
(1+d)t-—m

DEL(d | n, 0)

+1

[\/]8 :[\/]8

| 3

+1
0
0

1

&..
+

- But 0 is unobserved ....
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DEL Given Tenure of n Periods

- By Bayes’ theorem, the posterior distribution of 0 is

Sm|0)f(0xB)

SO B) === T B
_0%1(1 - g)fn
- B(o(yﬂ +1’l)
. Tt follows that
B+n

DELd|n.e. B) = o v d)

XoF (L B+n+ L+ B+n+1;)
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Posterior Distribution of 0

———  prior, E(0) = 0.46
3 4 e n=2,E(0) =0.25
R — n=4,E(0) =0.17

g 24




DEL Given Tenure of n Periods

Tenure Model Naive % Error
0 1.77  1.65 7%
2.59  2.35 9%
3.21 2.82 12%
3.70 3.14 15%
4.11 3.33 19%
446  3.43 23%
4,76  3.43 28%

A Ul bW N
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Impact of Heterogeneity on DEL Error

Consider three scenarios:

Scenario u ¢ o« B
1 0.3 0.1 2.7 6.3
2 0.3 03/0.7 1.6
3 0.3 0503 0.7

[0'¢ 1
d)_(x+[3+1
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Impact of Heterogeneity on DEL Error

3 1 1 -

. P
N sT T
2 - \‘\\\‘, ////”/ ------------------
N 5 e
9(0) VNN G g
.' \ \\\\ A L
1 A NN ~o X |
~ o \\?\\ /
~- s XTae -
0 — \l 0.5 T T T T 1
0.0 0.5 1.0 0 2 4 6 8 10
0 t
............. u=0.3,¢=0.1 e 1= 0.3, = 0.1
------- u=03,¢=03 ------- u=03,¢=03
----- u=03,¢ =05 ----- u=03,¢=05
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Varying the Retention Rate Censoring Point
(u=0.3,¢ =0.3)

1.0 ~
0.8
g
2 0.6
c
°
5
= 0.4
[~'4
0.2
0-0 T T T T T T T T T T

T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Impact of Heterogeneity on DEL Error

DEL for a just-acquired customer, varying the retention
rate censoring point (d = 0.1):

Censored at
Scenario u ¢ Model t=3 t=5

1 03 0.1 217 1.98 2.08
9% 4%

2 03 03 324 2,59 2.88
21%  11%

3 03 05 436 3.34 3.86

23%  12%
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Impact of Heterogeneity on DEL Error

DEL given tenure of n periods, varying the empirical
retention rate censoring point (d = 0.1):

n=0 n=2
Scenario u ¢ Model t=3 t=5 Model t=3 t=5
1 0.3 0.1 2.17 1.98  2.08 2.64 2.18 241
9% 4% 17% 9%
2 0.3 0.3 3.24 2.56  2.88 4.70 3.21 3.91
21% 11% 32% 17%
3 0.3 0.5 4.36 3.34 3.86 6.57 4.50 5.55
23% 12% 31% 16%

144



Valuing an Existing Customer Base

As we move from a single cohort of customers (defined
by year-of-acquisition),

Year 0 1 2 3 4 5 6

# Active 10,000 5417 3665 2749 2189 1813 1544

to a customer base composed of a number of different
cohorts, we must condition any calculation on time-of-
entry into the firm’s customer base.
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Valuing an Existing Customer Base

- Number of active customers by cohort:

2001 2002 2003 2004
5000 2708 1832 1374
10000 5417 3665

15000 8125

16000

5000 12708 22249 29163

. Fitting the sBG model, & = 1.1, 8 = 1.3
- Agg. 03-04 retention rate = 13163/ 22249 = 0.592
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Valuing an Existing Customer Base

DEL(d = 0.1)
Cohort Active in 2004 Model Naive
2001 1374 3.70 2.14
2002 3664 3.20 2.14
2003 8125 2.59 1.93
2004 16000 1.77 1.44

Total DEL 66080 49602

“Textbook” approach:

0.592

Total DEL = 291
ota M3 X T T 1= 0592)

= 33938
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Modelling Contract Duration in
Continuous Time

- The duration of an individual’s relationship with the
firm is characterized by the exponential distribution:

S(t|A) =e M
h(t|A) =A

- Heterogeneity in A follows a gamma distribution
with shape and scale parameters » and «,
respectively.

.
— the EG model: S(t|7f,(x):( X )
X+t
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Modelling Contract Duration in
Continuous Time

With continuous compounding at rate of interest 6, we
compute DEL for a customer with tenure s as:

DEL(S | survival to s, 7, &) = I St|t>s,r,)e 94t
S

o+ s\"
() e
s \x+t

= (x+8)"8" W, r;(x+5)5)

where ¥ (-) is the confluent hypergeometric function of
the second kind.
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Incorporating Individual-Level Dynamics

- Assuming Weibull-distributed individual lifetimes
and gamma heterogeneity in A gives us the
Weibull-gamma distribution, with survivor function

st (o)

- DEL for a customer with tenure s is computed by

solving
0 c\7T
J ((x+5 > o-3(t-9) gy
s \o+t€

using standard numerical integration techniques.
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See <http://brucehardie.com/papers/021/> for a
paper (and supporting spreadsheet) that explores these
issues associated with calculating CLV in a contractual

setting.

151

Part 4
Conclusions
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Customer-Base Analysis

We have proposed a set of models that enable us to
answer questions such as

- which customers are most likely to be active in the
future,

- the level of transactions we could expect in future
periods from those on the customer list, both
individually and collectively, and

- individual customer lifetime value (CLV)

when faced with a customer transaction database.
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Extensions

- Bring in submodel for value of each transaction
= DET — CLV
- Introduce covariates (customer descriptors and
marketing activities).

need to be wary of endogeneity bias and
sample selection effects
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Classifying Customer Bases
(Adapted from Schmittlein et al. 1987)

CPG purchases Brokerage account

Continuous Visits to doctor “Warehouse club”

Music downloading Health club usage

Opportunities for
Transactions

Church attendance Cable TV
Discrete Prescription refills Subscriptions

(Charitable giving) Health club m’ship

Unobserved Observed

Time At Which Customers Become Inactive
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Philosophy of Model Building
Keep it as simple as possible

Minimize cost of implementation

- Use of readily available software (e.g., Excel)

- Use of data summaries
Purposively ignore the effects of covariates
(customer descriptors and marketing activities) so

as to highlight the important underlying
components of buyer behavior.
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Central Tenet

Traditional approach
future = f(past)

Past Future
latent traits

I

Probability modelling approach
0 = f(past) — future = f(0)
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