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Abstract

We address a critical question that many firms are facing today: Can cus-
tomer data be stored and analyzed in an easy-to-manage and scalable manner
without significantly compromising the inferences that can be made about
the customers’ transaction activity? We address this question in the context
of customer-base analysis. A number of researchers have developed customer-
base analysis models that perform very well given detailed individual-level
data. We explore the possibility of estimating these models using aggregated
data summaries alone, namely repeated cross-sectional summaries (RCSS)
of the transaction data (e.g., four quarterly histograms). Such summaries
are easy to create, visualize, and distribute, irrespective of the size of the
customer base. An added advantage of the RCSS data structure is that
individual customers cannot be identified, which makes it desirable from a
privacy viewpoint as well. We focus on the widely used Pareto/NBD model
and carry out a comprehensive simulation study covering a vast spectrum of
market scenarios. We find that the RCSS format of four quarterly histograms
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serves as an suitable substitute for individual-level data. We confirm the re-
sults of the simulations on a real dataset of purchasing from an online fashion
retailer.

Keywords: OR in marketing, analytics, customer-base analysis, probability
models, Pareto/NBD, scalability, data aggregation, data privacy,
information loss

1. Introduction

With rapid increases in the technology for capturing and storing cus-
tomer activity data, databases on customer behavior have grown tremen-
dously in terms of richness and size. Many firms now have petabytes of data
on their customers’ offline and online transactions with them. Advancements
in data-analysis tools, however, have not kept up with advancements in stor-
age technology. So while it is possible for firms to enthusiastically collect
huge amounts of data, many firms are unable to make any meaningful use
of it. This is sometimes referred to as “data smog” or the “too-much-data
problem” (Cox, 2013; Weil, 2011; Whitler, 2012). This problem is especially
acute for medium-sized firms that find it cheap to invest in data collection and
storage technology but are unable to invest sufficiently in data-analysis ca-
pabilities. Specifically, scalability of data analysis methodologies is a critical
issue that many firms face. While examples of analytics-powered companies
that use large datasets effectively certainty exist (e.g., Amazon and Google),
such examples are the exception rather than the rule. Balasubramanian et
al. (1998), Kettenring (2009) and Keller et al. (2012) lay out several statis-
tical issues that arise in the analysis of large datasets, along with different
approaches to resolve these issue. As one possible solution, they call for the
development of parsimonious models and the aggregation of data. In line
with this, IS practitioners also call for appropriate data aggregation meth-
ods to achieve scalability (e.g., discussants on the “webanalytics” forum on
Yahoo! Groups suggest that “aggregation is 90 percent of scalability” (WA,
2008)).

In parallel, we have seen the development of a rich literature on statisti-
cal models for customer-base analysis (e.g., Abe, 2009; Batislam et al., 2007;
Fader et al., 2005a,b, 2010; Jerath et al., 2011; Morrison et al., 1982; Schmit-
tlein et al., 1987; Schmittlein and Peterson, 1994; Singh et al., 2009; Wu and
Chen, 2000). These models use data on customers’ past transactions with
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the firm to make forecasts about their future behavior, be it total purchasing
by the whole customer base or individual-level predictions (conditional on
the customer’s past behavior). These forecast can also be used to derive for-
mal metrics of the expected future value to the firm of individual customers
(such as customer lifetime value, or CLV) and the cohort (such as customer
equity).

As is the case with much of the work in Marketing, these models have
been developed assuming the analyst has ready access to the raw customer-
level transaction data and has the resources to process it. However, this is
frequently not the case in practice. Be it for reasons of data security (e.g.,
Sarbanes-Oxley) or simply good data management practices, the IS group
is typically unwilling to give unfettered access to the raw transaction data.
(Furthermore, as many parts of the IS and analytics functions have been
outsourced, the data-protection laws in many countries (particularly in Eu-
rope) complicate the process of transferring raw data across national borders
(Carey, 2009; Singleton, 2006).) Even having received copies of the relevant
data files, the task of data pre-processing is resource intensive. Furthermore,
there is the computational burden associated with running these traditional
statistical models on larger and larger datasets (i.e., scalability).

Any statistical model used for customer-base analysis is effectively a story
about the data-generating process. Is there any reason why we have to as-
sume we have access to the raw customer-level data when implementing our
models? Can we continue to tell a granular “story,” but specify the model
likelihood function for the data presented in a more aggregated form? Our
starting point is that the answers to these questions are no and yes, re-
spectively, and therefore ask the following question: Can customer data be
stored and analyzed in an easy-to-manage and scalable format without signifi-
cantly compromising the inferences that can be made about customer activity?
Working in a setting where we track the behavior of individual customers over
time, we present a methodology that achieves scalability through a carefully
designed data aggregation process.

The rest of the paper is organized as follows. In the next section, we
describe the data structure we study, namely repeated cross-sectional sum-
maries (RCSS). Then we briefly review the model that we focus on, namely,
the Pareto/NBD model, and describe how its parameters can be estimated
using RCSS data. We then discuss the theoretical foundations behind the
method we use to determine the number of RCSS histograms required to give
model performance comparable to that associated with the use of individual-
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level data. Following this, we carry out a comprehensive simulation study
covering a vast spectrum of market scenarios characterized by various levels
of customer-base “penetration” (i.e., individuals in the database making at
least one transaction in a given time period) and mean transaction frequency.
For each scenario, we simulate two years of individual-level data for a syn-
thetic customer base. These data are used to examine the loss of information
associated with the RCSS data structure and how best to create the RCSS
data (i.e., the period of time associated with each cross-sectional summary
and the number of such summaries required for estimation). Our (conser-
vative) recommendation is that four 13-week histograms is an appropriate
RCSS configuration. We then conduct the same analyses on a real dataset
from the online fashion retailer Bonobos, which confirms the results of our
simulations. Our results consistently establish that the model fit, parameter
values, and forecasts associated with the use of RCSS data can closely match
the corresponding estimates arising from the use of individual-level data.
Next, we compare the performance of RCSS data with the performance of
sampling-based methods in which individual-level data is sampled for a sub-
set of the cohort. Interestingly, we find that RCSS analysis gives comparable
(in fact, slightly better) performance while taking significantly lesser time
than sampling-based methods. We conclude with some managerial perspec-
tives on the use of RCSS data, including some other benefits that make it an
attractive alternative to model implementation using individual-level data —
even when there are no problems with data availability that may necessitate
its use.

2. The RCSS Data Structure

Statistical models for customer-base analysis have been developed assum-
ing the analyst has ready access to the raw customer-level transaction data.
With reference to Figure 1a, it is assumed that we know the timing of each
transaction for each customer (denoted by × on the individual time lines),
along with its associated monetary value, etc. In some cases, the data may
be stored in the firm’s databases in such a way that we do not know the
timing of each transaction, only how many transactions occurred in each
pre-specified time interval (as illustrated in Figure 1b). Fader and Hardie
(2010) derive the likelihood function for fitting the Pareto/NBD model to
such interval-censored data. Going further, individual-level interval-censored
data can be summarized across individuals for each time interval, resulting
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in what we call repeated cross-sectional summary (RCSS) data (as illustrated
in Figure 1c). Each “summary” is a histogram and, for each histogram, the
heights of the bars indicate the number of people in the database making
0, 1, 2, . . . transactions in that period.

ID = 1 -× × × × × ×

ID = 2 -× ×

ID = 3 -×
...

ID = I -× ××
Period 1 Period 2 Period 3 Period 4

(a)

ID = 1 2 0 3 1

ID = 2 0 1 0 1

ID = 3 0 1 0 0
...

...
...

...
...

ID = I 1 0 0 2

(b)

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

(c)

Figure 1: Panel (a) represents the individual-level transaction data for a customer database
containing the records for I customers. Panel (b) reports the same data in an interval-
censored form. Panel (c) shows the repeated cross-sectional summary (RCSS) data for the
customer base.

Such RCSS data have a number of attractive properties. They are easy
to create and distribute. Furthermore, they are inherently scalable. While
the size of the dataset required by the analyst is a function of the number of
customers in the transaction database (or the size of any sample) when the
data are requested in raw transaction form (or as interval-censored data),
the size of the RCSS dataset is effectively independent of the number of
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customers — as we go from summarizing the behavior of one thousand cus-
tomers to one million customers, the only thing that changes is the scaling
of the y-axis (i.e., the heights of the bars of the summary histograms in Fig-
ure 1c). An interesting by-product of creating these summaries is that, from
the data structure that emerges, it is truly impossible to “reverse engineer”
the behavior associated with any specific customer. This makes RCSS data
an attractive option from a privacy-preservation viewpoint as well.

Of course, the downside to such a data summary is obvious: it is no
longer possible to see the timing of the individual-level transactions. For
instance, we would have no way of knowing that the customer with ID=1
above made 2, 0, 3 and 1 transactions in periods 1, 2, 3 and 4, respectively.
This potentially reduces the information content of the data as we seek to
estimate the parameters of the model intended to describe the customer
buying behavior.

Some marketing managers and analysts already use RCSS data as they
seek to characterize the behavior of their customers and compute basic per-
formance metrics. For example, the Tuscan Lifestyles case (Mason, 2003)
features a marketing director using summaries of customer behavior in the
form of five annual histograms (of the number of orders per year) for the
purpose of computing the value of a new customer. There is some evidence
that such data can be used as a basis for more sophisticated analysis: Fader
et al. (2007) illustrate how the Pareto/NBD can be fit to the RCSS data
provided in the Tuscan Lifestyles case.

But while Fader et al. (2007) provide an initial “proof of concept” for the
RCSS approach, they do not address three issues that may be critical for
any analyst contemplating the use of such a data structure. First, they do
not demonstrate that it is an adequate substitute for individual-level data.
For example, are we able to draw the same model-based inferences we would
make if we had access to the individual-level data? Second, they do not give
any guidance for the creation of the repeated cross-sectional summaries of
the transaction data. (They simply used the five annual histograms reported
in Mason (2003).) For example, if we have a year of transaction data, can we
fit the model using just one histogram that summarizes the year’s transac-
tions by the customer base, or is it better to use two six-monthly histograms,
or four quarterly histograms? Such guidance is needed for any analyst con-
sidering the use of such a data structure. Third, the Tuscan Lifestyles case
is purely a “backward-looking” analysis: it takes a historical dataset and
“chops it up” into a RCSS format. Practitioners also need “forward-looking”
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advice; that is, how to create RCSS data “on the fly” as new transactions are
being recorded. In this paper, we develop and explore this kind of analysis
for simulated and real datasets.

With this background in mind, our objectives are as follows. Given RCSS
data, we examine: (i) how much information is “lost” when repeated cross-
sectional data summaries are used instead of the individual-level data, and
(ii) how many cross-sections are required to minimize information loss. In
order to address these issues, we need to pair up the RCSS data structure
with a well-established model for customer-base analysis in a noncontractual
setting; this gives us the benchmark required to understand how much infor-
mation loss will occur under these circumstances. In this context, a natural
benchmark is the Pareto/NBD model (Schmittlein et al., 1987). We know
from the empirical validations of the model presented in Schmittlein and Pe-
terson (1994) and Fader et al. (2005b), amongst others, that its predictive
performance is impressive. Applications of this model include the work of
Reinartz and Kumar (2000, 2003) on customer profitability, Hopmann and
Thede (2005) on churn prediction, and Wübben and Wangenheim (2008) and
Huang (2012) on managerial heuristics for customer-base analysis. Given its
widespread and successful application, the Pareto/NBD is an appropriate
model to use to evaluate the effectiveness of RCSS data in a customer-base
analysis setting.

As an aside, we note that the term “transaction” used above is very
general. To list a few examples, it can refer to purchasing from the firm
through online and/or offline channels, visits to the firm’s website, instances
of content viewing on different media channels, advertisement exposures over
time, and so on. Therefore, our study is relevant in a wide variety of practical
situations (effectively, any situation in which customer activity is recorded
over time). In the rest of the paper, we will use “transaction” and “purchase”
interchangeably.

2.1. Related Literature

Constructing RCSS data is a data aggregation technique that groups
continuous data into intervals. A large literature in statistics has addressed
the question of how continuous data should be grouped into discrete inter-
vals, and how much of the information content of the data is lost in this
data-reduction exercise (e.g., Aghelvi and Mehran, 1981; Connor, 1972; Cox,
1957; Davies and Shorrocks, 1989; Gastwirth and Krieger, 1975; Krieger and
Gastwirth, 1984; Parmigiani, 1998; Sawiris, 2000; Shaw et al., 1987; Tryfos,
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1985). Each of the above papers addresses this question in a context specific
to its motivating problem. For instance, several of the above papers study
different variants of the problem of grouping income data with the objective
that the values of an index of income inequality (e.g., the Gini coefficient)
calculated from the continuous data and the grouped data are close enough
(Aghelvi and Mehran, 1981; Davies and Shorrocks, 1989). Based on the
specific problem of interest, an appropriate information-loss function and an
acceptable degree of information loss are chosen; there is no general solution.

Our method is also related to other data-reduction alternatives such as
data squashing (see DuMouchel (2002) for a review), in which a large dataset
is summarized into a smaller dataset subject to some constraints, e.g., pre-
serving the lower-order moments of the data to a specified level of accuracy.
Other data reduction and pre-processing techniques are discussed in Han
and Kamber (2006). Zheng et al. (2003) study some popular data-reduction
methods and show that they are not without their pitfalls since different
methods can lead to drastically different results, both in terms of character-
izing the original data and out-of-sample predictions. In the analysis that
follows, we show that our method of aggregation has no such problems (at
least within the broad scope of our analysis).

A number of researchers have explored the issue of how to manage data
for distribution so as to overcome privacy-related concerns (e.g., Menon and
Sarkar, 2007). See Fung et al. (2010) for a review of current “privacy-
preserving data publishing” practices. Common approaches include anonymiz-
ing individual-level data (by removing identifying information such as names,
addresses and Social Security numbers) and perturbing micro-data such that
the individual-level records look different but the distributions of original
data values can be accurately estimated (Agrawal and Srikant, 2000; Gopal
et al., 2002; Li and Sarkar, 2006a,b). However, there are serious concerns
about the extent to which privacy is actually preserved in anonymized or per-
turbed micro-data (Malin and Sweeney, 2004; Mielikäinen, 2004; Narayanan
and Shmatikov, 2008). Our approach is substantially different from all of
the above because we summarize individual-level data using transaction fre-
quency histograms. There are absolutely no privacy concerns in the data
format we propose and we show that we can still accurately recover the key
characteristics of the original data.
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3. A Brief Review of the Pareto/NBD Model

The actual data-generating process that lies behind any observed cus-
tomer behavior is without doubt very complex. Even if completely deter-
ministic, it is not possible to measure all the variables that determine an
individual customer’s behavior. As such, any model of this behavior should
be expressed in probabilistic terms so as to account for our ignorance re-
garding all the determinants (not to mention the lack of data to capture
them). Rather than try to tease out the effects of various marketing, per-
sonal, and situational variables, a probability model acknowledges the fact
that we can never completely describe the actual data-generating process.
Thus we embrace the notion of stochasticity, viewing the behavior of inter-
est as the outcome of some probabilistic process. Such a model typically
has two components. First, the individual behavior of interest is character-
ized in terms of a probability distribution (or several distributions in the
case of more complex models). Second, differences in the parameters of the
individual-level distribution(s) are captured by additional probability distri-
butions, resulting in a mixture distribution that characterizes the behavior
of a randomly chosen individual. There is a long tradition of such models in
the marketing literature (Fader et al., 2014).

The defining characteristic of what Reinartz and Kumar (2000) call a
noncontractual setting is that the time at which an individual “dies” (i.e.,
should no longer be considered a customer) is unobserved by the firm. In
their seminal model of buyer behavior in such settings, Schmittlein et al.
(1987) proposed a latent-attrition/“buy till you die” model in which every
customer is assumed to make transactions until he drops out of the cohort.
More formally, they assumed that a customer’s relationship with the firm has
two phases: he is alive for an unobserved period of time, then becomes per-
manently inactive (i.e., dies). While alive, the customer’s transaction activity
is characterized by the NBD model (i.e., a customer’s inter-arrival times are
iid exponential and heterogeneity in the transaction rates is captured by a
gamma distribution with shape parameter r and scale parameter α). The
customer’s unobserved “lifetime” (after which he is viewed as being dead)
is treated as-if random, characterized by another exponential distribution;
heterogeneity in the underlying death rate across customers is assumed to
follow a gamma distribution with shape parameter s and scale parameter β.
Noting that a gamma mixture of exponentials is also known as the Pareto
(of the second kind) distribution, the resulting model of buyer behavior is
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called the Pareto/NBD.
Given the assumptions of the Pareto/NBD model, it turns out that we

do not require information on when each of the customer’s transactions oc-
curred (as illustrated in Figure 1a). The only customer-level information re-
quired to estimate the four model parameters are “recency” and “frequency.”
The conventional notation used to represent this recency and frequency gw-
toi4pi4information is (x, tx, T ), where x is the number of transactions that
occurred in the time interval (0, T ] and tx (0 ≤ tx ≤ T ) is the time of the
last transaction. (Note that while we do not need to know the exact time
of each transaction, we do need to know the exact time of the last observed
transaction.)

Given such “full information” data, the model likelihood function is

L(r, α, s, β |x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

{
s

r + s+ x
A1 +

r + x

r + s+ x
A2

}
(1)

where

A1 =


2F1

(
r + s+ x, s+ 1; r + s+ x+ 1; α−β

α+tx

)
(α + tx)r+s+x

if α ≥ β

2F1

(
r + s+ x, r + x; r + s+ x+ 1; β−α

β+tx

)
(β + tx)r+s+x

otherwise

and

A2 =


2F1

(
r + s+ x, s; r + s+ x+ 1; α−β

α+T

)
(α + T )r+s+x

if α ≥ β

2F1

(
r + s+ x, r + x+ 1; r + s+ x+ 1; β−α

β+T

)
(β + T )r+s+x

otherwise,

where 2F1(·) is the Gaussian hypergeometric function. (See Fader and Hardie
(2005) for complete details of the derivation.)

For a sample of I customers, where customer i had xi transactions in the
period (0, Ti] with the last transaction occurring at txi , the four Pareto/NBD
model parameters (r, α, s, β) are estimated by maximizing the sample log-
likelihood function

LL(r, α, s, β | data) =
I∑
i=1

ln
[
L(r, α, s, β |xi, txi , Ti)

]
. (2)
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This standard approach to parameter estimation assumes that we have
the sufficient statistics (recency and frequency) for each and every customer;
as such, it is of no use given RCSS data. However, as noted in the introduc-
tion, all we need to do is re-derive the model likelihood function for the data
format at hand. Fader et al. (2007) demonstrate how this can be done in the
case of RCSS data. We briefly review this approach here.

Schmittlein et al. (1987) derive an expressions for P (X(0, T ) = x), where
the random variable X(0, T ) denotes the number of transactions observed in
the time interval (0, T ], as implied by the Pareto/NBD model assumptions.
Following Fader et al. (2006), the probability of observing x transactions in
the time interval (Tj−1, Tj], where Tj−1 ≥ 0, is

P (X(Tj−1, Tj) = x | r, α, s, β)

= δx=0

[
1−

( β

β + Tj−1

)s]
+

Γ(r + x)

Γ(r)x!

( α

α + Tj − Tj−1

)r( Tj − Tj−1
α + Tj − Tj−1

)x( β

β + Tj

)s
+ αrβs

B(r + x, s+ 1)

B(r, s)

{
B1 −

x∑
k=0

Γ(r + s+ k)

Γ(r + s)

(Tj − Tj−1)k

k!
B2k

}
(3)

where

B1 =


2F1

(
r + s, s+ 1; r + s+ x+ 1;

α−(β+Tj−1)

α

)
αr+s

if α ≥ β + Tj−1
2F1

(
r + s, r + x; r + s+ x+ 1;

β+Tj−1−α
β+Tj−1

)
(β + Tj−1)r+s

otherwise

and

B2k =


2F1

(
r + s+ k, s+ 1; r + s+ x+ 1;

α−(β+Tj−1)

α+Tj−Tj−1

)
(α + Tj − Tj−1)r+s+k

if α ≥ β + Tj−1

2F1

(
r + s+ k, r + x; r + s+ x+ 1;

β+Tj−1−α
β+Tj

)
(β + Tj)r+s+k

otherwise.

This equation lies at the heart of any effort to estimate the parameters
of the Pareto/NBD model using RCSS data. Suppose the calibration pe-
riod (0, T ] is split into J consecutive periods: (0, T1], (T1, T2], . . . , (TJ−1, TJ ].
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(These periods do not have to be of equal length, but in practice we would
expect them to be.) For each period, we determine how many people make 0,
1, 2, 3, ... transactions, giving us a histogram of transactions (as illustrated
in Figure 1c).

Let us assume each histogram is right censored and has the bins 0, 1, 2, . . . ,
z−1, z+ (i.e., the number of individuals who did not make a transaction, the
number of individuals who transacted exactly once, exactly twice, . . ., exactly
z−1 times, and z or more times). Let n(j, x) denote the number of people
making x transactions in the jth time interval (Tj−1, Tj] and n(j, z+) denote
the number of people making z or more transactions in this time interval.

The four Pareto/NBD model parameters (r, α, s, β) are estimated by max-
imizing the following log-likelihood function for RCSS data spanning J con-
secutive periods, with the first period starting at T0 = 0:

LL(r, α, s, β | data) =
J∑
j=1

{ z−1∑
x=0

n(j, x) ln(P (X(Tj−1, Tj) = x | r, α, s, β))

+ n(j, z+) ln(P (X(Tj−1, Tj) ≥ z|r, α, s, β))

}
. (4)

Once the parameters of the Pareto/NBD model are estimated, we can
compute a number of different measures of interest to management. One
such measure is customer lifetime value, which is the net present value of the
future cashflows associated with a customer. The general explicit formula
for the computation of customer lifetime value is

E(CLV) =

∫ ∞
0

E[v(t)]S(t)d(t)dt ,

where v(t) is the net cashflow associated with the customer at time t, S(t)
is the survivor function (i.e., the probability that the customer has remained
alive to at least time t), and d(t) is a discount factor that reflects the present
value of money received at time t. Following Fader et al. (2005b), if we
assume a constant net cashflow per transaction of v̄, we have v(t) = v̄t(t),
where t(t) is the transaction rate at time t, and we have

E(CLV) = v̄

∫ ∞
0

E[t(t)]S(t)d(t)dt .

The solution to the integral is called the Discounted Expected Transac-
tions (DET) of the individual. For a just-acquired customer, DET measures
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the present value to the firm of all future transactions by the customer (ac-
counting for the transactions while alive, and the death processes), with
transactions at a future time point appropriately discounted to obtain their
present values. Multiplying by v̄ gives us an estimate of expected CLV.

When the flow of transactions is characterized by the Pareto/NBD model,
DET of a randomly chosen customer is given by

DET(r, α, s, β, δ) =
r

α
βΨ(1, 2− s; βδ) , (5)

where δ is the continuous compound rate of interest and Ψ(·) is the confluent
hypergeometric function of the second kind. (See the Appendix for details
of the derivation.) Given the central importance of CLV (and thus DET) as
both a managerially interesting metric as well as a long-run output of the
Pareto/NBD model, we will examine it in our empirical investigations.

The question facing the analyst is: what level of granularity of RCSS data
(i.e., the period of time associated with each cross-sectional summary and
the number of such summaries required for estimation) is sufficient for it to
be an adequate substitute for individual-level data? In the following section,
we discuss the theoretical foundations of the method we use to answer this
question.

4. Determining the Number of Histograms: Theoretical Founda-
tions

The RCSS method we propose is basically a lossy data compression
method in which individual-level data is aggregated into a set of histograms.
To determine the RCSS configuration that will adequately substitute for
individual-level data, we can invoke concepts from rate-distortion theory,
a branch of information theory that provides theoretical foundations for
lossy data compression. Rate-distortion theory states that, given the task of
compressing data X , the analyst must determine: (i) a distortion function
D(X ,Y), where Y is the compressed data, and D(X ,Y) returns as output a
scalar which indicates the degree of distortion, and (ii) a distortion threshold
D∗. Note that the exact form of the distortion function and the value of D∗

are chosen by the analyst, as appropriate for the application at hand. The
compression of X to Y is acceptable if D(X ,Y) ≤ D∗.

Given the above constraint, rate-distortion theory provides a way to de-
termine the compression method that ensures the most effificent message
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transfer (using the minimum number of bits of information) over a channel
such that the source (input signal, X ) can be approximately reconstructed
at the receiver (output signal, Y). Specifically, this can be achieved by max-
imizing the mutual information between X and Y . (See Cover and Thomas
(2006) for more details.) It is well known, however, that this optimization
problem typically cannot be solved analytically, except in the case of some
simple textbook examples; thus a numerical approach is almost always em-
ployed.

In our case, we have already fixed the compression method — given the
individual-level data as the input, we compress it into the RCSS data struc-
ture with a certain number of histograms as the output. The key decision
that needs to be made is which configuration of the RCSS data structure is
good enough (i.e., how many histograms should we use, and what should be
the period of coverage of each histogram, such that the distortion after the
lossy data compression is acceptable). In other words, we need to invoke only
the distortion component of rate-distortion theory by defining a distortion
metric when individual-level data is “compressed” into RCSS data.

As is done in applications of rate-distortion theory and in the literature
on inference from grouped continuous data (as discussed above), we need to
choose both the distortion metric and the distortion threshold. We define the
distortion metric as follows. Suppose X is the individual-level data and Yh is
the RCSS data with h histograms. We first estimate the model parameters
using the individual-level data and obtain the maximum value of the log-
likelihood function in (2); we denote this by LLX . We then estimate the
model parameters using a particular configuration of the RCSS data with
h histograms by maximizing (4) and, using the parameters obtained, we
calculate the value of (2); we denote this by LLYh . We define the distortion
metric D(X ,Yh) as the absolute percentage difference between LLX and
LLYh , which is defined as follows:

D(X ,Yh) =

∣∣∣∣∣LLYh − LLXLLX

∣∣∣∣∣× 100, (6)

where |x| denotes the absolute value of x. This is an appropriate distor-
tion metric since the smaller it is, the closer LLYh is to LLX , which is the
maximum of the individual-level log-likelihood function.

With regard to the distortion threshold D∗, we use very strict distortion
thresholds of the order of thousandths of one percent. However, given that we
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conduct a simulation study spanning a large number of different market sce-
narios, choosing one distortion threshold to use across all the different market
scenarios does not seem appropriate. We therefore base our analysis on the
trend in the values of the distortion function D(X ,Yh) with different number
of histograms (i.e., h ∈ {1, 2, 3, . . . }). We observe that, for every world, the
distortion values stabilize to very small values beyond a certain number of
histograms in the RCSS configuration; we use this to determine the appro-
priate RCSS configuration. More formally, we determine that h ∈ {2, 3, . . . }
is the appropriate number of histograms for the RCSS data structure if the
distortion with h histograms is small enough, and there is a sharp reduction
in distortion in going from h− 1 to h histograms and a comparatively small
reduction in distortion in going from h to h+1 and h+1 to h+2 histograms.
In other words, we say that h is the appropriate number of histograms if, in
the plot of distortion metric values against the number of histograms used,
the “elbow” occurs at h, and the distortion at h is small enough.

5. Simulation Study

We approach the question of how best to create the RCSS data from two
directions. First, we undertake a “backward-looking” analysis in which we
consider how finely we need to partition a fixed period into cross-sectional
summaries before model performance and parameter recovery stabilizes (if
at all). Suppose we have 52 weeks of purchasing data: should we use one 52-
week histogram, or two 26-week histograms, or three 17.3-week histograms,
. . ., or six 8.7-week histograms? Second, we undertake a “forward-looking”
analysis in which we consider how many cross-sectional summaries (each
of a fixed length) are required for a newly emerging dataset before model
performance and parameter recovery stabilizes.

Before we present the simulation study, we offer a brief overview of what
we expect to see as we increase the number of histograms used for the RCSS
model.

Consider the case of a backward-looking analysis where the analyst al-
ready has 52 weeks of data and has to decide how many cross-sectional data
summaries he should construct (one 52-week histogram, two 26-week his-
tograms, etc.). In the case of one 52-week histogram, the recovery of the
true underlying parameters (especially those associated with the death pro-
cess) will be weak because we have clumped together all the data available
for one year. Upon such aggregation, we lose the ability to track any time
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trends across the 52-week period that help identify the customer death pro-
cess. Many different combinations of the parameters may lead to very similar
52-week histograms. For example, a large number of zero buyers could be
due to a low underlying purchase rate while alive (i.e., r/α is small) or the
fact that a large number of existing customers died early on in the year before
they got around to making any purchases (i.e., s/β is large). Now consider
the case where we have two 26-week histograms available. In this case, the
ability to pin down the correct model parameters is better, since we can start
to separate out patterns related to the death process through the growth in
the number of zeroes from the first histogram to the second one. But it is
still difficult to describe the nature of this growth pattern over time.

As the number of histograms increases, we can track the underlying dy-
namics in purchasing patterns more closely and we have more information to
recover the true parameters. For instance, in the four histograms in Figure 1c,
we can see that the number of customers making zero purchases increases
over time and the number of customers making one, two or three purchases
decreases over time, which is a strong indication of customer death. If we
used one histogram for this length of time, we would not have been able to
make any such inferences about customer death over time. If we used two
histograms for this length of time, we would have been able to make such
inferences but they would have been rather coarse.

But there may be limits to this logic if we take it too far. As we “chop” the
data into a greater number of histograms (each covering a smaller number of
weeks), we may lose the meaningful information content from each histogram.
In the extreme case of, say, weekly histograms, we would have an enormous
number of 0’s and a very limited number of 1’s in every histogram. Thus, we
do not want to go too far in creating histograms to summarize the data; we
want to find the “just right” balance of parsimony and information value.

Similar arguments can be extended to a forward-looking analysis, except
that the problem here is even tougher. In this case, the analyst is con-
structing, say, quarterly histograms “on the go” and has to decide how many
quarters of data are sufficient to yield stable (and valid) parameter estima-
tion. As before, one histogram for one quarter is not expected to capture the
purchasing behavior particularly well — the data are for a very short time
period and we have only one histogram which makes it difficult to track any
underlying time trends. If we use two histograms for the first two quarters,
we can begin to gain some insight into the (latent) attrition patterns in the
cohort, but the total period of time covered is still short and it will be hard
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to discern trends in the death process as well as heterogeneity in the pur-
chasing while alive process. Histograms for three or four quarters start to
capture behavior over a considerable length of time and are expected to fur-
ther improve model performance. At some point, the incremental value of
waiting for additional histograms will be quite limited for the purposes of
determining the model parameters.

5.1. Simulation Design

We turn to an extensive simulation study that helps us answer the fol-
lowing questions: Can models built using RCSS data match the performance
of traditional models based on individual-level data? If yes, how many
histograms are required, both for backward-looking analysis and forward-
looking analysis?

As noted in the previous section, the Pareto/NBD model has four param-
eters: r, α, s, β. The parameters r and α capture the heterogeneity in the
latent purchase rates in the cohort, while the parameters s and β capture
the heterogeneity in the latent death rates in the cohort. For the purchasing
process, as α increases for a fixed value of r, the mean purchase rate for
the cohort decreases, and as r decreases for a fixed value of α, the hetero-
geneity in purchase rates in the cohort increases. For the death process, as
β increases for a fixed value of s, the median lifetime of customers in the
cohort increases, and as s decreases for a fixed value of β, the heterogeneity
in median lifetime increases. Hence, by manipulating these parameters we
can construct a number of cohorts, each of which reflects a different pattern
of customer purchasing and latent attrition behaviors.

We vary each of the four parameters at three levels, thus generating 34 =
81 different “worlds.” For the purchase process, we assign to r the values 0.5,
1 and 1.5 and we assign to α the values 5, 10 and 15; this results in average
weekly purchase rates (while alive) ranging from 0.033 to 0.3. For the death
process, we assign to s the values 0.5, 1 and 1.5, and to β the values 5, 10
and 15; this results in median lifetimes ranging from 2.9 to 45 weeks. (These
parameter values are consistent with the range of values seen in many prior
papers.) In the least active of the 81 worlds, the median customer life is
a mere 2.9 weeks and the average customer is expected to make only 1.7
purchases if he lives for 52 weeks. This lower bound in our simulation is
indeed a very low-activity world. In the most active of the 81 worlds, the
median customer life is 45 weeks and the average customer is expected to
make 15.6 purchases if he lives for 52 weeks. This upper bound represents
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a very high-activity world, with both the metrics (median customer life and
average purchases while alive) being a full order of magnitude larger than in
the “lower bound.” In terms of observable quantities, annual customer-base
penetration (100 × P (X(0, 52) > 0)) ranges from 13.1% to 85.7%, with an
average of 47.9%, while average annual sales per member of the customer
base (E[(X(0, 52)]) ranges from 0.2 to 9.9, with an average of 2.4.

For each of the 81 worlds, we simulate 104 weeks of individual-level data
for 25 synthetic cohorts of 10,000 customers each. We use the first 52 weeks of
data as the calibration sample and the last 52 weeks as the holdout sample.
As explained above, using a 52-week data window gives a wide variation
across cohorts in the purchasing and death processes. We now proceed to
the backward-looking and forward-looking analyses.

5.2. Backward-Looking Analysis

In the backward-looking analysis, the analyst already has individual-level
data for 52 weeks and wants to compress it into the RCSS format. The
question is: How many data summaries should he construct? Is there a
sufficient or optimal level of aggregation so that the resulting summaries
recover the underlying story of customer purchasing dynamics (i.e., recover
the model parameters)?

To answer these questions, for each of our 81 worlds, for each of the
25 simulation runs, we consider one 52-week histogram, two 26-week his-
tograms, three 17.3-week histograms, four 13-week histograms, five 10.4-week
histograms and six 8.7-week histograms. Each histogram has eleven “num-
ber of purchases” bins: 0, 1, . . . , 9, 10+.3 For each of the configurations of the
RCSS data, we calculate the distortion metric defined in (6) and determine
the RCSS configuration that is an acceptable substitute for individual-level
data. (Note that the distortion metric used to determine the appropriate
RCSS configuration is based on a measure of in-sample fit.) Following this,
we show that out-of-sample performance, parameter recovery, and recovery
of DET are also very good for the appropriate RCSS configuration.

To illustrate the patterns in the results, we present in Table 1 the values
of the distortion metric, D(X ,Yh), for h ∈ {1, 2, 3, 4, 5, 6} averaged across
25 simulation runs, for five “worlds.” These worlds are chosen to represent

3We also ran the complete simulation study with different numbers of bins, specifically,
with the histograms ending at 13+, 16+, 19+, 22+ and 25+. In every case, we obtained
virtually identical results in terms of all metrics considered.
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worlds with a wide range of mean purchase rates and median lifetimes for
the cohort. These are:

• World MM: specified by r = 0.5, α = 5, s = 0.5, β = 5, with a medium
mean purchase rate (0.1 purchases per week) and a medium median
lifetime (15 weeks);

• World LL: specified by r = 0.5, α = 15, s = 1.5, β = 5, with the lowest
mean purchase rate (0.03 purchases per week) and the lowest median
lifetime (2.94 weeks);

• World LH: specified by r = 0.5, α = 15, s = 0.5, β = 15, with the lowest
mean purchase rate (0.03 purchases per week) and the highest median
lifetime (45 weeks);

• World HL: specified by r = 1.5, α = 5, s = 1.5, β = 5, with the highest
mean purchase rate (0.3 purchases per week) and the lowest median
lifetime (2.94 weeks);

• World HH: specified by r = 1.5, α = 5, s = 0.5, β = 15, with the highest
mean purchase rate (0.3 purchases per week) and the highest median
lifetime (45 weeks).

The numbers in Table 1 show that, for all the five worlds above, there
is a substantial improvement in the value of the distortion metric as the
number of histograms increases up to four, but beyond that point the drop
is minuscule. The plot in Figure 2 shows this pattern visually for World
MM. Furthermore, for all five worlds, the value of the distortion metric when
four histograms are used is very small. Therefore, the RCSS configuration
with h = 4 (i.e., four histograms of 13 weeks each) is an appropriate RCSS
configuration. The pattern for these five worlds is highly representative of
the patterns for all 81 worlds.

In Table 2, we present statistics to provide an idea of the distribution of
the distortion metric across all 81 worlds (where the value used for each world
is the average across the 25 runs for that world). Interestingly, we find that
the pattern that holds for the five worlds discussed above holds for the average
values of the distortion metrics across all worlds. To see this, consider the
second column in Table 2, which shows the average values of the distortion
metric, D(X ,Yh), across all the worlds for different RCSS configurations. As
before, the average of the distortion metrics stabilizes beyond four histograms
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RCSS D(X ,Yh)
configuration World MM World LL World LH World HL World HH

1 × 52 wks 0.160% 0.648% 0.298% 2.050% 0.392%
2 × 26 wks 0.006% 0.080% 0.005% 0.010% 0.001%
3 × 17.3 wks 0.004% 0.048% 0.003% 0.008% 0.001%
4 × 13 wks 0.002% 0.021% 0.003% 0.005% 0.001%
5 × 10.4 wks 0.002% 0.014% 0.004% 0.005% 0.001%
6 × 8.7 wks 0.002% 0.008% 0.003% 0.003% 0.000%

Table 1: Results of the backward-looking analysis for Worlds MM, LL, LH, HL and HH,
averaged over 25 simulation runs.
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Figure 2: Plot of the distortion metric D(X ,Yh) for h ∈ {1, 2, . . . , 6} for the backward-
looking analysis for World MM, averaged over 25 simulation runs.

and is very small at four histograms (0.004%). This indicates that the RCSS
configuration with four histograms is appropriate for all 81 worlds. The other
columns show other statistics for the distribution of the average distortion
metrics (the minimum, the three quartiles, and the maximum). Note that
all the quantities follow the same pattern (dropping significantly on adding a
histogram for up to four histograms, and stabilizing beyond four histograms)
and support the conclusion that using four histograms of 13 weeks each is an
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RCSS D(X ,Yh)
configuration avg. min. 1st quart. med. 3rd quart. max.
1 × 52 wks 0.391% 0.090% 0.166% 0.241% 0.392% 2.701%
2 × 26 wks 0.010% 0.001% 0.003% 0.006% 0.010% 0.080%
3 × 17.3 wks 0.006% 0.001% 0.002% 0.004% 0.007% 0.048%
4 × 13 wks 0.004% 0.000% 0.002% 0.003% 0.005% 0.021%
5 × 10.4 wks 0.003% 0.000% 0.002% 0.003% 0.004% 0.017%
6 × 8.7 wks 0.003% 0.000% 0.001% 0.002% 0.003% 0.010%

Table 2: Results of the backward-looking analysis for 81 worlds.

appropriate RCSS configuration.
The above analysis to determine four histograms as an appropriate sub-

stitute for individual-level data is based on a distortion metric that basi-
cally compares in-sample performance of RCSS and individual-level data by
comparing the in-sample log-likelihood values. We now show that the four-
histogram RCSS configuration gives performance comparable to individual-
level data on other important metrics as well. We consider measures related
to parameter recovery, out-of-sample predictions, and recovery of a forward-
looking managerially relevant metric (DET). Note that since we have already
determined the four-histogram RCSS configuration as the appropriate one,
we present the above metrics only for this RCSS configuration.

A natural test of the performance of the RCSS approach is to compare the
associated parameter estimates with those obtained using the individual-level
data (i.e., parameter recovery). For each world, we know the original data-
generating parameters and, for each of the 25 runs, we know the parameters
recovered using individual-level data and the parameters recovered using the
four-histogram RCSS configuration. For each parameter we compute the
root mean square error (RMSE) across the 25 simulation runs for the world.
A small value of RMSE indicates that the parameter recovery is good, with
zero denoting perfect recovery. The RMSE values for parameter recovery for
Worlds MM, LL, LH, HL and HH are provided in Table 3. These RMSE
values for the individual-level analysis and the four-histogram RCSS analysis
are comparable, and show that parameter recovery is good for both, though
it is, understandably, less accurate for the RCSS case.

To obtain an idea of accuracy in parameter recovery across the 81 worlds,
we present the RMSE values for the four parameters averaged across all
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World MM World LL World LH World HL World HH
Indiv RCSS Indiv RCSS Indiv RCSS Indiv RCSS Indiv RCSS

r 0.000 0.032 0.063 0.089 0.032 0.032 0.055 0.118 0.032 0.045
α 0.134 0.173 1.362 1.509 0.623 0.581 0.179 0.338 0.122 0.155
s 0.032 0.045 0.095 0.212 0.077 0.122 0.055 0.084 0.032 0.032
β 0.721 1.288 0.842 1.925 4.514 7.686 0.338 0.619 1.105 1.452

Table 3: RMSE values for Worlds MM, LL, LH, HL and HH from an analysis with
individual-level data and four 13-week RCSS histograms, averaged over 25 simulation
runs.

81 worlds. For the individual-level analysis, these average RMSE values for
r, α, s and β are 0.044, 0.451, 0.061 and 1.293, respectively, while for the four-
histogram RCSS configuration, the average RMSE values are 0.069, 0.565,
0.100 and 2.332, respectively. As for the five worlds discussed above, average
RMSE values across the 81 worlds are comparable for the individual-level
analysis and the four-histogram RCSS analysis, and show that parameter
recovery is good for both. However, as may be expected, it is less accurate
for the RCSS case. Furthermore, recovery for the parameters of the death
process (s and β) is less accurate than recovery for the parameters of the
purchasing while alive process (r and α).

A second, more practical, way to understand how close the RCSS per-
formance is to that associated with the individual-level data is to examine
the quality of the forecasts created by the model (i.e., out-of-sample per-
formance). Using the data from each simulation run, we construct the true
histogram of purchases for the weeks 53–104 holdout period (i.e., one his-
togram for this 52-week period). We then generate the expected histogram
of purchases for the same time period using the individual-level parameters
and the RCSS parameters. The out-of-sample performance is based on how
close the predicted histograms are to the true histogram. The metric we use
to evaluate how closely a predicted histogram matches the true histogram
is the standard χ2 goodness-of-fit test statistic computed using these two
histograms. A smaller value of this statistic corresponds to a better match
between the true histogram and the predicted histogram, zero denoting a
perfect match.4

4When assessing the in-sample “goodness of fit” of a model, a p-value is usually re-
ported, which depends on the number of parameters used to estimate the model. In this
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The χ2 statistics for Worlds MM, LL, LH, HL and HH are provided in
Table 4. Across the 81 worlds, the average χ2 statistic from the individual-
level-data parameters has the value 9.8, and the χ2 statistic from the four-
histogram RCSS configuration parameters has the value 10.7. The values of
the χ2 statistics from the individual-level estimation and the four-histogram
RCSS estimation are close to each other; RCSS performance compares favor-
ably to individual-level performance.5

World MM World LL World LH World HL World HH
Ind χ2 9.7 6.2 11.4 8.9 8.8
RCSS-4 χ2 10.0 7.0 12.8 8.8 9.5

Table 4: χ2 values for Worlds MM, LL, LH, HL and HH from an analysis with individual-
level data and four 13-week RCSS histograms, averaged over 25 simulation runs.

Looking beyond one year, we now examine how well the RCSS method
compares with individual-level data by comparing estimates of lifetime value,
as captured by the Discounted Expected Transactions (DET) measure (de-
fined in (5)) computed using the two sets of parameters. For our DET cal-
culations, we use an annual discount rate of 15%, which corresponds to a
continuously compounded rate of δ = 0.0027. The DET values for Worlds
MM, LL, LH, HL and HH are provided in Table 5. (The DET number for
any given world is obtained by averaging the DET numbers from each of
the 25 simulation runs for that world.) We see that the DET values from
both individual-level analysis and RCSS analysis with four histograms are
very close. Across the 81 worlds, the average percentage deviation in the
DET obtained from the individual-level parameters and the four-histogram
RCSS parameters is 0.6%. These values show that the four-histogram RCSS
configuration provides DET values that are very close to those obtained from

case, however, we are comparing out-of-sample histograms: we report the χ2 statistic only
as a measure of the “match” between the original and predicted out-of-sample histograms,
and not as a measure of the “goodness of fit” of the model. No parameters (or “degrees of
freedom”) are associated with the holdout period, so it does not make sense to compute
p-values here.

5Other metrics can also be used for evaluating out-of-sample performance. For instance,
using the root mean square error (RMSE) between the predicted and the original out-of-
sample histograms yields the same conclusions regarding out-of-sample performance in all
cases.
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an analysis of individual-level data.

World MM World LL World LH World HL World HH
Ind DET 6.788 0.276 3.663 2.455 32.326
RCSS-4 DET 6.741 0.275 3.620 2.455 31.916

Table 5: DET values for Worlds MM, LL, LH, HL and HH from an analysis with individual-
level data and four 13-week RCSS histograms, averaged over 25 simulation runs.

This DET comparison is not only very favorable for the RCSS approach
but we also see it as the most diagnostic of the various analyses conducted
in this section. Inaccuracies in parameter recovery can counterbalance each
other, e.g., a high value of the r parameter can be nullified by a similarly
high value of the α parameter, if the overall mean of the transaction rate
(r/α) is unaffected. Likewise, a year-long forecast period is useful, but it
is dominated by the infinite-horizon nature of the DET calculation. Thus,
the very close matches seen in Table 5 are a very good indication about the
validity of the RCSS estimation approach.

As we complete our detailed investigation of the backward-looking anal-
ysis, we offer a final comment on our assertion that four 13-week histograms
are generally recommended for the RCSS method. This recommendation is a
conservative one; looking across the 81 worlds, there are a number of scenar-
ios in which the three-histogram configuration would be quite satisfactory as
well. We used a variety of data-mining procedures to try to discover common
characteristics of worlds that tend to support three versus four histograms,
but did not come up with anything sufficiently systematic or robust. Thus
for clarity and convenience, we stick with our global recommendation of four
histograms, but we encourage future researchers to look more carefully for
conditions under which alternative configurations may be preferable.

5.3. Forward-Looking Analysis

In the forward-looking analysis, imagine that the analyst receives data in
the form of quarterly histograms. The key question is: How many quarterly
histograms are needed before one can confidently uncover the story behind
the purchasing process of the cohort, if at all? To answer this question,
for each of our 81 worlds, we consider one 13-week histogram, two 13-week
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histograms, three 13-week histograms and four 13-week histograms.6 As
noted earlier, this is quite a different test as compared to the preceding
backward-looking analysis, because we are changing the amount of data we
use instead of varying the summary period for a fixed dataset. We should be
able to better uncover the latent buying and dropout processes with more
histograms, but it is possible that we can do this without all four quarters
of data — the marginal improvement in model fit after, say, three quarterly
histograms might be small.

In order to determine the number of RCSS histograms that adequately
serve as a substitute for individual-level data, we analyze the values of the
distortion metric D(X ,Yh), for h ∈ {1, 2, 3, 4}. To illustrate the patterns
in the results, we present in Table 6 these values for Worlds MM, LL, LH,
HL and HH, as defined earlier, averaged across the 25 simulation runs of
each world. (Note that in the forward-looking analysis, we cannot have more
than four quarterly histograms for 52 weeks of customer data, while in the
backward-looking analysis we could go beyond four histograms by reducing
the time interval covered by each histogram.) These numbers show that there
is a significant drop in the value of the distortion metric as we increase the
number of histograms. By the time we get to four histograms, the value of
the distortion metric is very small.

RCSS D(X ,Yh)
configuration World MM World LL World LH World HL World HH

1 × 13 wks 1.739% 4.295% 2.727% 0.536% 0.133%
2 × 13 wks 0.015% 0.090% 0.017% 0.007% 0.005%
3 × 13 wks 0.004% 0.041% 0.004% 0.005% 0.001%
4 × 13 wks 0.002% 0.021% 0.002% 0.005% 0.001%

Table 6: Results of the forward-looking analysis for Worlds MM, LL, LH, HL and HH,
averaged over 25 simulation runs.

We now consider all the 81 worlds. As in the backward-looking case, in
Table 7, we present statistics that provide an idea of the distribution of the
distortion metrics across all 81 worlds (where the value used for each world
is the average across the 25 runs of that world).

6As in the backward-looking analysis, we have eleven “number of purchases” bins
(0, 1, . . . , 9, 10+) for each histogram.
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RCSS D(X ,Yh)
configuration avg. min. 1st quart. med. 3rd quart. max.

1 × 13 wks 2.771% 0.133% 1.412% 2.733% 3.770% 6.758%
2 × 13 wks 0.020% 0.004% 0.009% 0.015% 0.025% 0.090%
3 × 13 wks 0.007% 0.001% 0.003% 0.005% 0.008% 0.041%
4 × 13 wks 0.004% 0.000% 0.002% 0.003% 0.005% 0.021%

Table 7: Results of the forward-looking analysis for 81 worlds.

We note, once again, that our choice of four histograms is a conservative
one, and the three-histogram RCSS configuration would be satisfactory in
many cases. Using three quarterly histograms would imply that we can do
without even using all four quarters of data. However, to be on the safe side
when making any claims, we choose the four-histogram RCSS configuration.

For the other metrics for the four-histogram RCSS configuration (i.e.,
out-of-sample predictive accuracy, parameter recovery and recovery of man-
agerially relevant metrics), we refer the reader to the previous section on
backward-looking analysis. This is because the four-histogram RCSS con-
figuration for the forward-looking analysis is exactly the same as the four-
histogram RCSS configuration for the backward-looking analysis, which im-
plies that the values of interest of these metrics, and thus the conclusions
that we draw from them, are the same as those discussed in Section 5.2.

6. Validation on a Real Dataset

We now replicate our analysis on a dataset from Bonobos, a popular US
online fashion retailer. This dataset has been used in Lee and Bell (2013).
Beginning from October 2007, this dataset tracks the purchasing activity of
10,000 customers, starting with each customer’s first-ever purchase at Bono-
bos. To simplify the analysis process, and to maintain consistency with our
simulation study, we use exactly 52 weeks of purchase data for each cus-
tomer (starting from the time of each customer’s first-ever purchase with the
company).

First, we fit the Pareto/NBD model on the individual-level data. We
then proceed to the backward-looking analysis using RCSS data. Given
52 weeks of individual-level data, we construct one 52-week histogram, two
26-week histograms, . . . , and six 8.7-week histograms. For each of these
configurations, we estimate the parameters of the Pareto/NBD model, and
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compute the in-sample log-likelihood for the individual-level data using these
parameters. Table 8a shows the values of the distortion metric, D(X ,Yh),
for the different RCSS configurations. We see that the patterns from the
simulations are confirmed for this dataset, and the RCSS configuration with
four 13-week histograms is an appropriate choice. (There is a slight hint
of degradation as we get to six histograms, suggesting that we are starting
to “chop” the data into too many histograms and are therefore losing the
meaningful information content from each histogram.)

For the forward-looking analysis, we construct one 13-week histogram,
two 13-week histograms, three 13-week histograms, and four 13-week his-
tograms and run the same analysis as above. Table 8b shows the values of
the distortion metric, D(X ,Yh), for the different RCSS configurations. We
again see that the patterns from the simulations are confirmed, and the RCSS
configuration with four 13-week histograms is an appropriate choice.

Finally, we show in Table 8c that the parameter estimates associated
with the individual-level data are close to those associated with the RCSS
data. For a randomly-chosen customer from this cohort, the DET values
obtained from the individual-level data and the RCSS data with four 13-
week histograms are 3.976 and 3.875, respectively, which implies a difference
of only 2.55%.

This brief analysis shows that the patterns we find for in-sample fit and
recovery of parameters from the simulation apply quite well to the “real
world” Bonobos dataset. This is a strong indication that our simulation
results are practical and robust.

7. Comparisons with Samples of Individual-Level Data

One advantage of constructing RCSS data from individual-level data is
that it provides scalability when dealing with large datasets. But it is not the
only way to make large datasets more manageable. Another (more common)
approach is to utilize random samples from the complete dataset for model
estimation. In the context of our study, the analyst could randomly sample
the full purchase history data for a certain percentage of individuals in the
dataset and estimate the model parameters on this smaller dataset. Estima-
tion on the smaller dataset would take less time, while possibly providing
performance close to that obtained with the full dataset. In this section, we
compare the computational performance of estimation using a sample of the
individual-level data versus the four-histogram RCSS configuration.
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RCSS configuration D(X ,Yh)
1 × 52 weeks 7.78%
2 × 26 weeks 0.27%
3 × 17.3 weeks 0.05%
4 × 13 weeks 0.03%
5 × 10.4 weeks 0.04%
6 × 8.7 weeks 0.10%

(a) Backward-looking analysis

RCSS configuration D(X ,Yh)
1 × 13 weeks 63.94%
2 × 13 weeks 1.45%
3 × 13 weeks 0.19%
4 × 13 weeks 0.03%

(b) Forward-looking analysis

Individual-level RCSS
(4 × 13 weeks)

r 0.887 0.753
α 28.784 24.884
s 0.241 0.242
β 2.241 2.222

DET 3.976 3.875

(c) Comparison of parameter estimates and DET

Table 8: Summary of the results of a backward- and forward-looking analysis of the
Bonobos dataset.

We describe our analysis using World MM (with parameter values r = 0.5,
α = 5, s = 0.5 and β = 5) as an example. We simulate 52 weeks of data for
25 different cohorts of 100,000 customers. From each cohort of 100,000 cus-
tomers, we sample individual-level data for subsets of 10,000, 20,000, 30,000,
. . . , 100,000 customers (i.e., the last sample uses the full dataset). For each of
these samples, we construct RCSS data with four histograms. Next, for each
sample, we estimate the model parameters using the individual-level data
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and the RCSS data. This gives us two sets of parameter estimates for each
sample, one from the individual-level data and one from the RCSS data. Us-
ing these two sets of parameter values, we calculate the value of log-likelihood
expression in (2) using the individual-level data for all 100,000 customers;
comparing the two log-likelihood values thus obtained for the full dataset but
using different sets of parameter values provides a common basis for com-
paring the performance from the two estimation approaches. Note that the
maximum of the log-likelihood expression in (2) obtained from the estima-
tion on the individual-level data for the full cohort of 100,000 customers is
the “benchmark” log-likelihood value against which the above log-likelihood
values can be compared. We also record the time taken for estimation from
the sampled individual-level data and from the RCSS data created from this
sample.

In Table 9, we present the results of the analysis for the world under
consideration. All values are averaged over 25 runs. The first column gives
the sample sizes of the different cohorts, the second and third columns give
the times taken for parameter estimation, and the fourth and fifth columns
give the full-data log-likelihood values. Note that the log-likelihood value
in the last row of the fourth column (i.e., −727,644.0) is the “benchmark”
value for comparison, and the closer the other log-likelihood values are to this
number, the “better” is the performance of that configuration. We find that
the full-data log-likelihood numbers for both the individual-level data and the
RCSS data are very close to the benchmark value (with percentage differences
of the order of thousandths of one percent or smaller) and approach it as the
sample size increases.

In Figure 3, we present the times taken by the estimations using individual-
level data and RCSS data for cohorts of different sizes. The plot shows
a striking pattern: we find that the time taken for the estimation with
individual-level data increases approximately linearly with the size of the
sample. On the other hand, the time taken for the estimation with RCSS
data stays approximately constant (in fact, slightly decreases) with increas-
ing sample size. Furthermore, the RCSS computation time drops below that
of the individual-level data estimation time between a sample size of 10,000
and 20,000 customers.

We note in Table 9 that, for each sample size, the full-data likelihood eval-
uated using the individual-level data parameter estimates is slightly smaller
than that associated with the RCSS parameter estimates. However, the
full-data likelihood for the parameters estimated on the full-data RCSS sum-
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Estimation time (seconds) Full-data LL
Sample size Individual RCSS Individual RCSS

10, 000 2.02 2.66 −727, 661.4 −727, 672.1
20, 000 3.22 2.21 −727, 652.0 −727, 662.7
30, 000 4.09 2.17 −727, 648.3 −727, 653.0
40, 000 5.63 2.18 −727, 647.1 −727, 653.0
50, 000 6.54 2.18 −727, 645.9 −727, 650.8
60, 000 7.14 2.24 −727, 645.4 −727, 648.7
70, 000 8.39 2.03 −727, 644.8 −727, 647.4
80, 000 10.83 1.89 −727, 644.6 −727, 647.6
90, 000 10.73 2.10 −727, 644.2 −727, 647.2

100, 000 11.60 2.08 −727, 644.0 −727, 646.7

Table 9: Comparison of model performance with individual-level and RCSS data, with
data samples of different sizes for the case where r = 0.5, α = 5, s = 0.5, β = 5, averaged
over 25 simulation runs.
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Figure 3: Plot of the time taken for estimation with individual-level data and RCSS data
for data samples of different sizes, averaged over 25 simulation runs.

maries (i.e., all 100,000 individuals) is smaller than that associated with the
individual-level data parameters estimated off a sample of 40,000 or fewer
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individuals, while taking less than half the time of the individual-level data
sample of 40,000. Thus it makes sense to estimate the model parameters us-
ing full-data RCSS summaries than to estimate them using reasonably large
samples of individual-level data.

We find that the patterns uncovered above extend to all 81 worlds. In the
simulations for the other words, the time taken for individual-level estimation
increased linearly with sample size, and the time taken for RCSS estimation
was less than the time taken for individual-level estimation for 56 out of 81
worlds with a sample of 20,000 customers, and for 79 out of 81 worlds with a
sample of 30,000 customers. In all cases, the full-data log-likelihood values,
calculated as described above, were very close (with percentage differences of
the order of thousandths of one percent or smaller). This analysis yields an
interesting conclusion — individual-level data and RCSS data both perform
well with sampling, but RCSS data provides a time advantage for larger
samples.

8. Discussion

With advances in their IS capabilities, firms are able to finely track and
record details on their customers’ transactions with them. However, firms are
getting inundated with the huge amounts of data generated, and are there-
fore struggling to extract useful insights about their customers from these
data. A number of researchers have developed customer-base analysis mod-
els that perform very well given detailed individual-level customer data. In
this paper, we explore the possibility of estimating these models using data
summaries. We consider a simple data structure for recording the transac-
tion activity of a cohort of customers, which we call repeated cross-sectional
summary (RCSS) data. The RCSS data structure is an easy-to-manage,
scalable, privacy-preserving format. Given RCSS data, we ask: Under what
conditions, if at all, will a customer-base analysis model that has been shown
to work well on individual-level data also work well with RCSS data? We
focus on the Pareto/NBD model and answer this question based on a compre-
hensive simulation study covering a broad spectrum of market scenarios char-
acterized by various levels of customer-base penetration and mean purchase
frequency. Our results consistently establish that, for both backward-looking
analysis and forward-looking analysis, the model fit (and parameter values)
associated with the use of RCSS data can closely match the corresponding
estimates associated with individual-level data. Beyond proving the viability
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of the RCSS data structure when using the Pareto/NBD model, we believe
we have “raised the bar” for other analysts (and policy makers) who are
searching for “best practices” in data storage that can leverage commercially
available datasets while also being scalable and privacy-preserving.

The results we present in this paper are for a specific configuration (52
weeks for calibration and 52 weeks for holdout), which we have chosen to
represent a typical situation faced by firms (i.e., given one year of data,
forecast sales for the coming year). However, we expect our results to hold
for other configurations with different time periods, as long as metrics such as
penetration and purchase frequency (for that time period) fall in the range of
those associated with the simulation. If customers purchase at a faster rate
than considered in our simulations, then even shorter time periods should
work. However, if customers purchase at a slower rate than considered in our
simulations, a longer time period would be required. We provide a method,
rooted in rate-distortion theory, for determining the optimal number of RCSS
histograms in scenarios are not addressed by our analysis.

We use the Pareto/NBD model because it is has been used widely with
great success for customer-base analysis in noncontractual settings using
individual-level data. The aim of this paper, however, is not to study the ca-
pabilities of the Pareto/NBD model; rather it is to showcase the capabilities
and advantages of the RCSS data structure (when the right kind of model is
used). For this reason, we have characterized our simulated “worlds” using
metrics such as penetration and purchase frequency, which are independent
of the assumptions of the Pareto/NBD model. The success of the approach
on the Bonobos dataset lends further support to this claim. We would ex-
pect our results to hold for similar customer-base analysis models, such as
the BG/NBD model (Fader et al., 2005a) and the PDO model (Jerath et al.,
2011).

As previously discussed, the use of the RCSS data structure has three
attractive properties relative to the use of the raw customer-level data typ-
ically required by statistical models for customer-base analysis. First, the
data summaries are easy to create and distribute. The analyst does not
require access to the transaction database, and the process of creating the
histograms is not too onerous a task for any IS group. Second, it is highly
scalable — irrespective of the cohort’s size or level of activity, only a few
histograms are required to summarize its buying behavior. Finally, the ag-
gregated form of the data is such that there is no threat of customer privacy
being compromised.
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Beyond these reasons, the RCSS data format offers some additional ad-
vantages as well. First, the cross-sectional summaries need only be repeated,
and not necessarily of equal length. For instance, for a 52-week period, the
analyst could have one histogram for weeks 1 to 13 (13 weeks long), another
for weeks 14 to 33 (20 weeks long) and another for weeks 34 to 52 (19 weeks
long). Given these RCSS data, the underlying parameters could still be esti-
mated in the same exact manner as described earlier in the paper. While we
would expect it to work well in most cases, there might be some limits as to
how short the period for a histogram can be. For instance, a 5-week period
might be too short to have a sufficient number of customers who make one or
more purchases, making the resulting histogram not sufficiently informative
to help in parameter estimation.

The flexibility to use histograms of different lengths might offer an oppor-
tunity to fine-tune (and potentially shorten) the model estimation process.
Recognizing the expected slowdown in purchasing (associated with the “buy
till you die” perspective) suggests that early histograms will be relatively
dense compared to later ones, so it may be possible to shorten the time win-
dow associated with them. There could be several potential improvements
here, which we leave to future research.

Second, the cross-sectional summaries need not be immediately adjacent
to one another. For instance, given a 52-week period, we might have one
histogram for weeks 1 to 13, another for weeks 14 to 26, and another for
weeks 40 to 52, while the histogram for weeks 27 to 39 might be missing.
Our estimation procedure could still give accurate estimates of the under-
lying parameters. In contrast, such a scenario would make it very difficult
to estimate the parameters of the Pareto/NBD model using the standard
likelihood function (i.e., equation (2)) as it requires complete recency and
frequency data. (Other customer-base analysis models would suffer from
this same problem as well.) A comprehensive simulation study could inform
us about how robust the estimation approach is to different types of missing
histograms.

Finally, to construct the histograms for each period, the exact count
of purchases is not required — the percentage of customers in each bin is
sufficient. In other words, to calibrate the model, we only need the percentage
of customers in the cohort making 0, 1, 2, . . . repeat purchases in each period.
Hence, if an analyst has a sufficiently accurate idea of these percentages and
is able to construct the (approximately correct) histograms for (say) three
quarters, the latent purchase and death characteristics of the customer base
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can be estimated, and future activity predicted.
The use of the RCSS data structure does not necessarily imply that firms

have to give up on targeted marketing. Summary data for the entire co-
hort can be used for model estimation, but once the parameters are ob-
tained, they can be applied to any purchase history (real or hypothetical)
to obtain conditional expectations, CLV, and other forward-looking metrics
commonly associated with customer-base analysis. For example, we could
use the parameters estimated using the RCSS data to compute CLV over a
recency×frequency grid, from which a set of rules could be derived for scoring
the original transaction database.

Furthermore, we do not have to use a single set of histograms for the
whole cohort; early-activity indicators can be used to construct segments of
customers, the behavior of which is then summarized using segment-specific
repeated cross-sectional summaries. The model can then be used to gain
further insights into the behavior of the members of each segment. For
instance, Mason (2003) provides RCSS data for two cohorts, where one cohort
is composed of customers who had made a first purchase of less than $50 and
the other is composed of customers who had made a first purchase of $50 or
more. The analysis of these data presented in Fader et al. (2007) shows how
the Pareto/NBD model can be used to identify the underlying factors that
lie behind observed differences in expected CLV (e.g., differences in expected
lifetime and purchasing while alive).

To conclude, we have established that, for customer-base analysis appli-
cations, RCSS data can work just as well as individual-level data in a wide
variety of market scenarios. We have also laid out several promising research
opportunities to be pursued in the future. However before incorporating
these extensions, we encourage researchers and practitioners to contemplate
the basic RCSS data structure and to begin to take advantage of its practical
benefits for customer-base analysis.
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Appendix: Derivation of DET(r, α, s, β, δ)

Our objective is to derive the expression for DET (discounted expected
transactions) when buyer behavior is characterized by the Pareto/NBD model.
This sees us specifying t(t), S(t), and d(t) and solving the following integral:∫ ∞

0

E[t(t)]S(t)d(t)dt .

Conditional on λ and µ, E[t(t)] = λ and S(t) = e−µt. Since we are
operating in continuous time, d(t) = e−δt where an annual discount rate of
(100×d)% is equivalent to a continuously compounded rate of δ = ln(1 +d).
(If the data are recorded in time units such that there are k periods per year
(k = 52 if the data are recorded in weekly units of time) then the relevant
continuously compounded rate is δ = ln(1 + d)/k.) Therefore,

DET(λ, µ, δ) =

∫ ∞
0

λe−µte−δtdt

=
λ

µ+ δ
.

To obtain the expression for DET for a randomly chosen customer, we
remove the conditioning on λ and µ

DET(r, α, s, β, δ) =

∫ ∞
0

∫ ∞
0

DET(λ, µ, δ)g(λ|r, α)g(µ|s, β)dλdµ

=
r

α

βs

Γ(s)

∫ ∞
0

µs−1

µ+ λ
e−βµdµ

letting z = µ
/
δ (which implies that µ = δz and dµ = δdz)

=
r

α

βsδs−1

Γ(s)

∫ ∞
0

zs−1

1 + z
e−βδzdz

which, noting the integral representation of the confluent hypergeometric
function of the second kind,

=
r

α
βsδs−1Ψ(s, s; βδ).

Given Kummer’s transformation Ψ(a, b; z) = z1−bΨ(a− b+1, 2− b; z), we
can rewrite this as

DET(r, α, s, β, δ) =
r

α
βΨ(1, 2− s; βδ).
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