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1 Introduction

When dealing with any real-world count data associated with human be-
haviour, we should assume that it is overdispersed (Hanley and Bhatnagar
2022). The “go to” distribution for characterising such data is the negative
binomial distribution (NBD), which has pmf

P (X = x | r, α) = Γ(r + x)

Γ(r)x!

(
α

α+ 1

)r ( 1

α+ 1

)x

(1)

and mean
E(X | r, α) = r/α . (2)

Given the task of fitting the NBD to a dataset, most analysts would
estimate the parameters using the method of maximum likelihood. However,
this was not always the case. Greenwood and Yule (1920), who first proposed
the gamma mixture of Poisson distributions as a chance mechanism that
generates the NBD, used the method of moments. While it was known
that method of moments estimators are not efficient (Jeffreys 1939) and
maximum likelihood estimators proposed (e.g., Haldane 1941), maximum
likelihood methods were rarely used because of their complexity given the
computational tools at statisticians’ disposal in that era (Anscombe 1949).
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Anscombe (1949, 1950) proposed an alternative estimation method in
which the sample mean and proportion of zeros are equated with their the-
oretical counterparts and we solve for the parameters. This is known as the
method of mean and zeros.

Let p0 be the observed proportion of zeros in the dataset and x̄ the
sample mean. This gives us two equations,

p0 =

(
α

α+ 1

)r

(3)

x̄ = r/α , (4)

with two unknowns (r and α).
It follows from (4) that α = r/x̄. Substituting this in (3) gives us

p0 =

(
r

r + x̄

)r

. (5)

Finding the root of this equation gives us r̂. It follows that α̂ = r̂/x̄.
Alternatively, it follows from (4) that r = αx̄. Substituting this in (3) gives
us

p0 =

(
α

α+ 1

)αx̄

. (6)

Finding the root of this equation gives us α̂, and r̂ = x̄α̂. A solution to (5)
and (6) exists if −x̄/ ln(p0) > 1; see Appendix A.

Anscombe (1949, 1950) showed that the method of mean and zeros esti-
mator has a very high large-sample efficiency when the distribution is reverse
J-shaped (with more zeros than ones). Many datasets to which to NBD is
fitted have this shape and therefore “mean and zeros” became a popular
method for estimating the parameters of the NBD.

There is no explicit solution to (5) or (6). The root can be found using
iterative methods; see Appendix B. Evans (1953) and Chatfield (1969) de-
rived tables that make it possible to get an approximate solution to (5) by
simply interpolation.

In a paper that has received very little attention, Morrison (1969) used a
series approximation to derive an explicit formula that gives us an accurate
estimate of the root of (5) or (6). We now present a detailed derivation of
Morrison’s result.

2 Morrison’s Series Approximation

At the heart of Morrison’s solution is the idea of series reversion:

“If you have a power series for a function f(y), then it is often
possible to get a power series approximation to the solution for y
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in the equation f(y) = x. This power series effectively gives the
inverse function f−1 such that f(f−1(x)) = x. The operation
of finding the power series for an inverse function is sometimes
known as reversion of power series.”1

Given the power series

y = a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · · ,

the reversed series is

x = A1y +A2y
2 +A3y

3 +A4y
4 +A5y

5 + · · · ,

where the new coefficients (A1, A2, . . .) can be expressed in terms of the
original coefficients (a1, a2, . . .). Abramowitz and Stegun (1972, equation
3.6.25) presents expressions for A1, . . . , A7. Methods for deriving the coeffi-
cients of higher-order terms can be found in a number of old mathematical
references. These days, it is easier to delegate the task to software.

Letting u = x̄/(r + x̄), which implies r = x̄(1− u)/u, (5) becomes

p0 = (1− u)x̄
1−u
u .

Taking the log of both sizes and rearranging terms gives us

ln(p0)

x̄
=

(1− u

u

)
ln(1− u) . (7)

(We arrive at the same expression for (6) by letting u = 1/(α + 1), which
implies α = (1− u)/u.)

Noting that a Maclaurin series expansion for the natural logarithm is

ln(1− x) = −
∞∑
n=1

xn

n
= −x− x2

2
− x3

3
− x4

4
− · · · , |x| < 1 ,

we can rewrite (7) as

ln(p0)

x̄
=

(1− u

u

)(
− u− u2

2
− u3

3
− u4

4
− · · ·

)
which is equivalent to

ln(p0)

x̄
+ 1 =

1

2
u+

1

6
u2 +

1

12
u3 + · · ·+ 1

i(i+ 1)
ui + · · · .

Reverting this series gives us a power series approximation to the solution
for u.

1https://reference.wolfram.com/language/tutorial/SeriesLimitsAndResidues.

html#31107 (Accessed 2025-01-03)
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Morrison reported the first six terms of the reverted series. Using Math-
ematica’s InverseSeries command, we compute (and report in the table
below) the coefficients for the first 15 terms.2 We do not add extra terms
because of numerical precision issues in basic numerical computing environ-
ments. For example, base-R starts changing the digits in a long integer
after the fifteenth or sixteenth digit.3 If you enter a number with more
than 15 digits in an Excel worksheet cell, any digits past the fifteenth digit
are changed to zero (Microsoft 2024). The denominator of A16 contains 16
digits.

i ai Ai

1 1
2 2

2 1
6 −4

3

3 1
12

4
9

4 1
20 − 16

135

5 1
30

8
405

6 1
42 − 16

2835

7 1
56 − 32

42525

8 1
72 − 128

127575

9 1
90 − 32

45927

10 1
110 − 103616

189448875

11 1
132 − 1726784

3978426375

12 1
156 − 54631168

155158628625

13 1
182 − 19316224

66496555125

14 1
210 − 13582336

55857106305

15 1
240 − 159899648

775793143125

This results in the following procedure for estimating r and α.

2Note that Morrison’s values for A2, . . . , A6 do not exactly match those reported here.
We assume that this is due to rounding error in his calculations.

3This can be overcome by using packages such as gmp and Rmpfr. However, if we are
worried about such accuracy, we probably should not be using this approach to estimating
the NBD’s parameters.
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Given p0 and x̄:

v ← ln(p0)

x̄
+ 1

u←
15∑
i=1

Aiv
i

α̂← 1− u

u
r̂ ← x̄α̂

To illustrate this, suppose the NBD with r = 0.161 and α = 0.129 is
the true data-generating process.4 With reference to Figure 1, this implies
the proportion of zeros is 0.705 and the mean is 1.248 (cells B4:B5, com-
puted by evaluating (1) and (2)). We compute v in cell B7. Given the
values of Ai and vi in cells H3:I17, we compute u (cell B8) using the formula
=SUMPRODUCT(H3:H17,I3:I17). The resulting estimates of r and α are very
close to the true values— see the absolute errors reported in cells B13:B14.
Traditional root-finding methods recover the original parameters— see Ap-
pendix B.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

A B C D E F G H I
r 0.161 A_i
alpha 0.129 i num. denom. A_i v^i

1 2 1 2.00000 0.72016
p_0 0.705 2 -4 3 -1.33333 0.51864
mean 1.248 3 4 9 0.44444 0.37350

4 -16 135 -0.11852 0.26898
v 0.72016 5 8 405 0.01975 0.19371
u 0.88574 6 -16 2835 -0.00564 0.13950
alpha (est) 0.12900 7 -32 42525 -0.00075 0.10047
r (est) 0.16100 8 -128 127575 -0.00100 0.07235

9 -32 45927 -0.00070 0.05211
Absolute error 10 -103616 189448875 -0.00055 0.03752
r 3.99E-06 11 -1726784 3978426375 -0.00043 0.02702
alpha 3.19E-06 12 -54631168 155158628625 -0.00035 0.01946
p_0 3.61E-06 13 -19316224 66496555125 -0.00029 0.01402
mean 0.00E+00 14 -13582336 55857106305 -0.00024 0.01009

15 -159899648 775793143125 -0.00021 0.00727

Figure 1: Implementing Morrison’s series approximation

Microsoft Excel calculates formulas and stores the results with 15 signif-
icant digits of precision. If we set p0 to 0.705 and x̄ to 1.248 (i.e., round the
true values to three d.p.), we get r̂ = 0.161239 and α̂ = 0.129198. These
are very close to the values we get using traditional root-finding methods
(r̂ = 0.161243 and α̂ = 0.129201)—see Appendix B.

4These parameter values are the maximum likelihood estimates (rounded to three d.p.)
associated with fitting the NBD to the champagne purchasing data reported in Gourieroux
and Visser (1997).
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Morrison (1969) presents three examples to check the accuracy of his
six-term series expansion.

� In example 1, p0 = 0.1 and x̄ = 4. He obtains r̂ = 2.26014 and reports
that p0− p̂0 = −9.35×10−7. Our fifteen-term series expansion gives us
r̂ = 2.26016 and the resulting error in the estimate of p0 is 1.15×10−10.

� In example 2, p0 = 0.2 and x̄ = 4, which corresponds to r = 1. He
obtains r̂ = 0.999701 and reports that p0 − p̂0 = −4.85 × 10−5. We
obtain r̂ = 1.00000 with an errror in the estimate of p0 of 9.89× 10−8.

� In example 3, p0 = 0.5 and x̄ = 3.75, which corresponds to r =
0.25. Morrison’s series expansion yields r̂ = 0.249865. We obtain
r̂ = 0.249898.

As we would expect, adding the extra terms to the series expansion yields
more precise estimates.

3 Relevance in the 21st Century

Sprott (1983, p. 457) comments that “[i]n the present age of computer so-
phistication, computational difficulty is no longer a justification for seeking
alternative and inefficient estimation procedures in place of maximum like-
lihood estimation, particularly when there are only two or three parameters
to be estimated.” What was true in the early 1980s is even more true in the
present day. It is a trivial exercise to fit the NBD to a dataset using maxi-
mum likelihood estimation; we can do this in a Excel spreadsheet (assuming
an optimization add-in such as Solver is installed). So why would we care
about the method of mean and zeros?

If we have the raw count data or a frequency distribution, we should not
care; we would use maximum likelihood estimation. However, if the only
data at hand are the sample mean and proportion of zeros, it is the only
way to go.

Within marketing, two common brand performance measures are pene-
tration and purchases per buyer (PPB). Penetration is the proportion of the
sample that made at least one purchase in the time period of interest, and
PPB is the average number of times the product was purchased by those
that purchased it at least once in that same time period. We note that

penetration = 1− p0 (8)

and

PPB =
x̄

1− p0
. (9)
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Given these two numbers for any brand and the assumption that the distri-
bution of the number of transactions can be characterized by the NBD, we
can estimate the model parameters using the method of mean and zeros and
then compute related brand performance measures without needing access
to the raw transaction data. Morrison’s series approximation means these
can be computed immediately.
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Appendix A

It is often noted that a solution to (5) or (6) only exists if −x̄/ ln(p0) > 1.
However, the logic of this is not widely documented. The following expla-
nation is presented in Banerjee and Bhattacharyya (1976).

The function given in (5) is equivalent to

ln(p0) = r ln

(
1

1 + x̄/r

)
,

which is equivalent to

− x̄

ln(p0)
=

(
x̄

r

)
1

ln(1 + x̄/r)
. (A1)

Noting that for u > 0, 1/(1 + u) < 1, it follows that for every y > 0,∫ y

0

1

1 + u
du <

∫ y

0
1 du ,

which implies ln(1+y) < y or y/ ln(1+y) > 1. Therefore the right-hand side
of (A1) must be greater than 1, which means −x̄/ ln(p0) must be greater
than 1.

In a similar manner, it is easy to show that (6) is equivalent to

− x̄

ln(p0)
=

(
1

α

)
1

ln(1 + 1/α)
. (A2)

Using the same logic as for (A1), the right-hand side of (A2) must be greater
than 1, which means −x̄/ ln(p0) must be greater than 1.

Note that the Poisson distribution is a limiting case of the NBD as
r (and α) → ∞ for a given mean E(X). If X is distributed Poisson with
mean λ, E(X) = λ and P (X = 0) = e−λ, i.e., −E(X)/ ln

(
P (X = 0)

)
= 1.

Appendix B

Given the task of finding the root of (5) or (6) using iterative methods, many
analysts would make use of Newton’s method (which sees us computing the
first derivative of the function) or the secant method. However, the fixed-
point iteration method is much easier to apply to this task.

In order to find the root of f(x) = 0, the fixed-point iteration method
first sees us rewriting the equation as x = g(x). Then, given an initial guess
of x0, we compute the sequence

xn+1 = g(xn), n = 0, 1, 2, . . .

hoping it converges, thereby giving us the root.
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To illustrate this, consider (5). Taking the log of both sides and re-
arranging terms, we have

r = ln(p0)
/
ln

{(
r

r + x̄

)}
. (B1)

Suppose the NBD is the true data-generating process, with r = 0.161
and α = 0.129; these are the parameters estimates used in our numerical
example in Section 2. With reference to Figure B1, this implies the true
proportion of zeros is 0.705 and the mean is 1.248 (cells B4:B5). Setting r0
to 1, we enter =LN(B$4)/LN(D2/(D2+B$5)) in cell D3 and copy the formula
down the column. To check for convergence, we enter =D3=D2 in cell F3 and
copy the formula down the column. We see that rn converges reasonably
quickly. (Is this equal to the true value of r? We enter =D42=0.161 in cell
B42 and see that the answer is “yes”.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
41
42

A B C D E F
r 0.161 n r r_n = r_n-1?
alpha 0.129 0 1.0000

1 0.4311 FALSE
p_0 0.705 2 0.2569 FALSE
mean 1.248 3 0.1975 FALSE

4 0.1755 FALSE
r (est) 0.1610 5 0.1668 FALSE
alpha (est) 0.1290 6 0.1634 FALSE

7 0.1620 FALSE
Absolute error 8 0.1614 FALSE
r 5.55E-17 9 0.1612 FALSE
alpha 5.55E-17 10 0.1611 FALSE
p_0 1.11E-16 11 0.1610 FALSE
mean 0.00E+00 12 0.1610 FALSE

13 0.1610 FALSE
39 0.1610 FALSE

TRUE 40 0.1610 TRUE

Figure B1: Implementing the fixed-point iteration method

As the values for p0 and x̄ reported in cells B4:B5 are stored with 15
significant digits of precision, it is not surprising that we recover the exact
value of r and therefore α. Figure B2 reports the solution when we set p0
to 0.705 and x̄ to 1.248 (i.e., round the true values to three d.p.). We see
that rn converges reasonably quickly. Unsurprisingly, we do not recover the
original value of r.

We can, of course, find the root using off-the-shelf software. We can
do so using Excel’s Solver add-in in the following manner. With reference
to Figure B3a, we enter the values of p0 and x̄ in cells B1:B2. We enter
a starting value for r of 1 in cell B3 and compute the implied value of α
by entering =B4/B2 in cell B4. Next, we enter the formula for p0 − P (X =
0 | r, α) in cell B7: =B1-(B5/(B5+1))^B4. We use Solver to find the value of
r that sets this cell to a value of 0—see Figure B4 for the associated Solver
settings. The solution is given in Figure B3b.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
41
42

A B C D E F
r 0.161 n r r_n = r_n-1?
alpha 0.129 0 1.0000

1 0.4315 FALSE
p_0 0.705 2 0.2572 FALSE
mean 1.248 3 0.1979 FALSE

4 0.1758 FALSE
r (est) 0.161243 5 0.1671 FALSE
alpha (est) 0.129201 6 0.1636 FALSE

7 0.1622 FALSE
Absolute error 8 0.1616 FALSE
r 2.43E-04 9 0.1614 FALSE
alpha 2.01E-04 10 0.1613 FALSE
p_0 1.11E-16 11 0.1613 FALSE
mean 0.00E+00 12 0.1613 FALSE

13 0.1612 FALSE
39 0.1612 FALSE
40 0.1612 TRUE

Figure B2: Fixed-point iteration solution with rounded p0 and x̄

1
2
3
4
5
6
7

A B
p_0 0.705
mean 1.248

r (est) 1.000000
alpha (est) 0.801282

p_0 - P(X=0) 0.26016

1
2
3
4
5
6
7

A B
p_0 0.705
mean 1.248

r (est) 0.161243
alpha (est) 0.129201

p_0 - P(X=0) 6.57E-08

(a) (b)

Figure B3: Root finding using Solver

Figure B4: Solver settings
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We note two things. First, our estimates of r and α are the same (at
least to six d.p.) as those obtained using the fixed-point iteration method
(as reported in Figure B2). Second, the value of p0−P (X = 0) is not exactly
zero.a This is due to the default convergence criteria used by Solver.

We could also formulate this as an optimization problem, setting our
objective function as (p0 − P (X = 0))2 and instructing Solver to find the
value of r that minimizes this function.b

aThis means our estimates of r and α are not exactly the same as those obtained using
the fixed-point iteration method. However, being the same to six d.p. is good enough in
this context.

bIt is important to check that the objective-function value is 0 at the minimum. Oth-
erwise the solution is not a root.
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