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In the note “Exploring the Distribution of Customer Lifetime Value (in Contractual

Settings)” (Fader and Hardie 2017), we show how questions about the distribution
of the value of a cohort of customers can be answered easily if we know the mean

and variance of CLV. In that note we computed these quantities from the distribu-
tion of CLV, assuming the distribution of customer lifetimes is characterized by the

beta-geometric (BG) distribution (Fader and Hardie 2007). In this note, we derive
closed-form expressions for these quantities, thus simplifying the process of answer-
ing questions about the distribution of cohort value. In presenting these derivations,

we assume familiarity with the derivations presented in Fader and Hardie (2010).

1. Set-up

• We assume a discrete-time contractual setting. Let the random variable L,

with realizations l = 1, 2, 3, . . ., denote the lifetime of a customer.

• We assume that the distribution of lifetimes is characterized by the BG. In
other words, conditional on θ, L ∼ geometric(θ), and θ is a realization of Θ,

which is distributed beta(γ, δ).

• Given a discount rate of d×100%, a lifetime of l periods, and period-by-period

value w1, w2, . . . , wl, lifetime value is computed as

LV (d |L = l, w1, w2, . . . , wl)

= w1 +
w2

1 + d
+

w3

(1 + d)2
+ · · ·+

wl

(1 + d)l−1
.

† c©2018 Peter S. Fader and Bruce G. S. Hardie. This document and the associated Excel work-

book can be found at <http://brucehardie.com/notes/036/>.
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These quantities are only known with certainty ex post; ex ante, lifetime value
a random variable.

• Suppose wi = w̄ ∀ i (which is known with certainty). We have

LV (d |L = l) = w̄

{

1 +
1

1 + d
+

1

(1 + d)2
+ · · ·+

1

(1 + d)l−1

}

= w̄DL(d |L = l) ,

where the discounted lifetime, given a lifetime of l periods, is computed as

DL(d |L = l) = 1 +
1

1 + d
+

1

(1 + d)2
+ · · ·+

1

(1 + d)l−1
.

• So as to make our derivations a little tidier, let

ρ =
1

1 + d
, (1)

in which case

LV (d |L = l, w1, w2, . . . , wl) =
l∑

i=1

wiρ
i−1

DL(d |L = l) =

l−1∑

i=0

ρi

=
1 − ρl

1− ρ
. (2)

In the following derivations, we will use d and ρ in the same equation without
comment.

Note that it follows from (1) that

1

1 − ρ
=

1 + d

d
.

2. Discounted Lifetime

Conditional on L = l, DL is not a random variable. Let us remove that conditioning
under the assumption of BG-distributed lifetimes.

• Conditional on θ, the expected discounted lifetime is

E[DL(d) | θ] =

∞∑

l=1

DL(d |L = l)P (L = l | θ)
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=
1

1 − ρ

∞∑

l=1

(1 − ρl)θ(1− θ)l−1

=

(
1 + d

d

)
[
1 − J(θ, d)

]
, (3)

where

J(θ, d) =

∞∑

l=1

ρlθ(1 − θ)l−1 (4)

= ρθ

∞∑

m=0

[ρ(1− θ)]m

=
ρθ

1 − ρ(1− θ)

=
θ

d + θ
.

• Let us now remove the conditioning on θ. By definition,

E[DL(d) | γ, δ] =

∫ 1

0

E[DL(d) | θ] g(θ | γ, δ)dθ

=

(
1 + d

d

)
[
1 − J(γ, δ, d)

]
,

where

J(γ, δ, d) =

∫ 1

0

J(θ, d)g(θ | γ, δ)dθ

=

∫ 1

0

θ

d + θ

θγ−1(1− θ)δ−1

B(γ, δ)
dθ

=
1

B(γ, δ)

∫ 1

0

θγ(1− θ)δ−1(d + θ)−1dθ

letting s = 1 − θ

=
1

B(γ, δ)

∫ 1

0

sδ−1(1 − s)γ(1 + d − s)−1ds

=
1

B(γ, δ)(1 + d)

∫ 1

0

sδ−1(1 − s)γ(1− 1
1+ds)−1ds

=
1

1 + d

B(γ + 1, δ)

B(γ, δ)
2F1

(
1, δ; γ + δ + 1; 1

1+d

)

=
1

1 + d

(
γ

γ + δ

)

2F1

(
1, δ; γ + δ + 1; 1

1+d

)
. (5)
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• We now turn our attention to var[DL(d) | γ, δ], the variance of DL. As an
intermediate step, we derive an expression for E[DL(d)2 | γ, δ)].

• By definition,

E[DL(d)2 | θ] =

∞∑

l=1

DL(d |L = l)2P (L = l | θ)

=
1

(1− ρ)2

∞∑

l=1

(1− ρl)2θ(1 − θ)l−1

=
1

(1− ρ)2

∞∑

n=1

(1− 2ρl + ρ2l)θ(1− θ)l−1

which, letting ρ′ = ρ2 ⇔ d′ = d(d+2), and recalling our definition of J(θ, d),
(4),

=
1 − 2J(θ, d) + J(θ, d′)

(1− ρ)2

=

(
1 + d

d

)2
[
1 − 2J(θ, d) + J(θ, d′)

]
.

We remove the conditioning on θ using the result given in (5).

• To summarize,

E[DL(d) | γ, δ)] =

(
1 + d

d

)
[
1− J(γ, δ, d)

]
, (6)

E[DL(d)2 | γ, δ] =

(
1 + d

d

)2
[
1 − 2J(γ, δ, d)+ J(γ, δ, d′)

]
, (7)

var[DL(d)2 | γ, δ] = E[DL(d)2 | γ, δ]− E[DL(d) | γ, δ]2 , (8)

where d′ = d(d + 2) and

J(γ, δ, d) =
1

1 + d

(
γ

γ + δ

)

2F1

(
1, δ; γ + δ + 1; 1

1+d

)
.

• We present an example of these calculations in Appendix A.

3. Lifetime Value

• We now turn our attention to the derivation of expressions for the mean and
variance of LV .
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• Recall

LV (d |L = l, w1, w2, . . . , wl) =

l∑

i=1

wiρ
i−1 .

For a given individual, we assume the wi are realizations of Wi, which are iid
with pdf f(w | η). We assume that η varies across individuals with distribution

g(η | ξ) (which is independent of the distribution of Θ).

• Given L = l and η, LV is the random variable

LV (d |L = l, η) =

l∑

i=1

Wiρ
i−1

with mean

E[LV (d |L = l, η)] =

l∑

i=1

E(Wi | η)ρi−1

= E(W | η)
l∑

i=1

ρi−1

= E(W | η)DL(d |L = l) .

• Removing the conditioning on L = l, we have

E[LV (d | η) | γ, δ] = E(W | η)E[DL(d) | γ, δ] .

• Removing the conditioning on η, we have

E[LV (d) | γ, δ, ξ] = E(W | ξ)E[DL(d) | γ, δ] . (9)

• In order to compute the variance of LV , we need an expression for E[LV (d)2 | γ, δ, ξ].

As a first step, we derive an expression for E[LV (d |L = l, η)2].

• Approach 1: Since the Wi are iid,

var[LV (d |L = l, η)] =

l∑

i=1

var(Wi | η)(ρi−1)2

= var(W | η)

l∑

i=1

(ρ2)i−1

=
1 − ρ2l

1 − ρ2

[
E(W 2 | η)− E(W | η)2

]
.
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It follows that

E[LV (d |L = l, η)2]

= var[LV (d |L = l, η)]+ E[LV (d |L = l, η)]2

=
1 − ρ2l

1 − ρ2
E(W 2 | η)−

1 − ρ2l

1 − ρ2
E(W | η)2 +

{
1 − ρl

1 − ρ

}2

E(W | η)2 . (10)

• Approach 2: By definition,

E[LV (d |L = l, η)2] = E[(W1 + ρW2 + · · ·+ ρl−1Wl)
2]

=

l∑

i=1

l∑

j=1

ρi−1ρj−1E(WiWj | η) .

Noting that E(WiWj | η) = E(W 2 | η) if i = j, E(W | η)2 otherwise, we have

E[LV (d |L = l, η)2] =

l∑

i=1

(ρi−1)2E(W 2 | η) + 2

l∑

i=1

l∑

j=i+1

ρi−1ρj−1E(W | η)2

= E(W 2 | η)

l∑

i=1

(ρ2)i−1

+ E(W | η)2
{ l∑

i=1

l∑

j=1

ρi−1ρj−1 −

l∑

i=1

(ρi−1)2
}

︸ ︷︷ ︸

sum of all terms minus sum of diagonal

which, noting that the finite double series can be written as a product of series1

= E(W 2 | η)

l∑

i=1

(ρ2)i−1

+ E(W | η)2
{( l∑

i=1

ρi−1

)2

−

l∑

i=1

(ρ2)i−1

}

=
1− ρ2l

1 − ρ2
E(W 2 | η) +

{
1 − ρl

1− ρ

}2

E(W | η)2

−
1 − ρ2l

1 − ρ2
E(W | η)2 ,

which is the same as (10).

1http://mathworld.wolfram.com/DoubleSeries.html
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• Recalling (2) and our definition of d′,

1 − ρ2l

1 − ρ2
= DL(d′ |L = l) .

Therefore,

E[LV (d |L = l, η)2] =
{
E(W 2 | η)− E(W | η)2

}
DL(d′ |L = l)

+ E(W | η)2DL(d |L = l)2 .

• Removing the conditioning on L = l, we get

E[LV (d | η)2 | γ, δ] =
{
E(W 2 | η)− E(W | η)2

}
E[DL(d′) | γ, δ]

+ E(W | η)2E[DL(d)2 | γ, δ] . (11)

• Removing the conditioning on η, we get

E[LV (d)2 | γ, δ, ξ] =
{
E(W 2 | ξ)− E[E(W | η)2 | ξ]

}
E[DL(d′) | γ, δ]

+ E[E(W | η)2 | ξ]E[DL(d)2 | γ, δ] , (12)

where

E(W 2 | ξ) =

∫ ∞

0

E(W 2 | η)g(η | ξ)dη , and (13)

E[E(W | η)2 | ξ] =

∫ ∞

0

E(W | η)2g(η | ξ)dη . (14)

• See Appendix B for a specific example of E(W | ξ), E(W 2 | ξ), and E[E(W | η)2 | ξ]
under the assumption of value being distributed according to the gamma-

gamma model (Fader and Hardie 2013).

• It follows that

var[LV (d) | γ, δ, ξ] = E[LV (d)2 | γ, δ, ξ]− E[LV (d) | γ, δ, ξ]2 .

• Aside: We can write (11) as

E[LV (d)2 | γ, δ, η] = var(W | η)E[DL(d′) | γ, δ] + E(W | η)2E[DL(d)2 | γ, δ] .

Suppose there is no within-individual variance in per-period value; in other

words, variation in value is purely cross-sectional. This means var(W | η) = 0
and therefore

E[LV (d)2 | γ, δ, η] = E(W | η)2E[DL(d)2 | γ, δ] .
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It follows that

var[LV (d) | γ, δ, η] = E[LV (d)2 | γ, δ, η]− E[LV (d) | γ, δ, η]2

= E(W | η)2E[DL(d)2 | γ, δ]− E(W | η)2E[DL(d) | γ, δ]2

= E(W | η)2
{
E[DL(d)2 | γ, δ]− E[DL(d) | γ, δ]2

}

= E(W | η)2var[DL(d) | γ, δ] .

This is what we would expect given the basic property of variances: var(cX) =
c2var(X) for constant c.

• Pushing this a little further, suppose there is no variation in within-individual

value (i.e., wi = w̄ ∀ i) but there is between-individual variation captured by
f(w̄ | ξ). Conditional on W̄ = w̄,

E[LV (d | w̄) | γ, δ] = w̄E[DL(d) | γ, δ] ,

E[LV (d | w̄)2 | γ, δ] = w̄2E[DL(d)2 | γ, δ] .

• Removing the conditioning on w̄ gives us

E[LV (d) | γ, δ, ξ] = E(W̄ | ξ)E[DL(d) | γ, δ] , (15)

E[LV (d)2 | γ, δ, ξ] = E(W̄ 2 | ξ)E[DL(d)2 | γ, δ] . (16)

• When there is no variation in w̄ across customers (i.e., var(W̄ 2 | ξ) = 0, it is
obviously the case that E(W̄ 2 | ξ) = E(W̄ | ξ)2 = w̄2, and therefore

E[LV (d) | γ, δ, w̄] = w̄E[DL(d) | γ, δ] ,

E[LV (d)2 | γ, δ, w̄] = w̄2E[DL(d)2 | γ, δ] ,

var[LV (d) | γ, δ, w̄] = w̄2var[DL(d) | γ, δ] .

4. Residual Lifetime Value

Suppose a customer acquired at the beginning of period 1 is still a customer in

period n. Standing at the end of period n, what are the mean and variance of the
residual lifetime value of this customer?

• Given a residual lifetime of l (> 0) periods and period-by-period value wn+1,

wn+2, . . . , wn+l, residual lifetime value is computed as

RLV (d, active for n periods |RL = l, wn+1, wn+2, . . . , wn+l)

= wn+1 +
wn+2

1 + d
+

wn+3

(1 + d)2
+ · · ·+

wn+l

(1 + d)l−1
.

(If RL = 0, the residual lifetime value is obviously zero.) These quantities are
only known with certainty ex post; ex ante, residual lifetime value is a random

variable.
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• Suppose wi = w̄ ∀ i (which is known with certainty). We have

RLV (d, active for n periods |RL = l)

= w̄

{

1 +
1

1 + d
+

1

(1 + d)2
+ · · ·+

1

(1 + d)l−1

}

= w̄DRL(d |L = l) ,

where the discounted residual lifetime, given a residual lifetime of l (> 0) peri-
ods, is computed as

DRL(d, active for n periods |RL = l)

= 1 +
1

1 + d
+

1

(1 + d)2
+ · · ·+

1

(1 + d)l−1

=
1− ρl

1 − ρ
.

If RL = 0, the discounted residual lifetime is zero.

• Conditional on θ, the probability of a residual lifetime of l periods (l =

0, 1, 2, . . .) is

P (RL = l | θ, active for n periods) =
P (L = n + l | θ)

S(n − 1 | θ)

=
θ(1 − θ)n+l−1

(1− θ)n−1

= θ(1 − θ)l .

• It follows that, conditional on θ, the expected discounted residual lifetime is

E[DRL(d, active for n periods) | θ]

=

∞∑

l=0

{
DRL(d, active for n periods |L = l)

× P (RL = l | θ, active for n periods)
}

=
1

1− ρ

∞∑

l=1

(1− ρl)θ(1 − θ)l

=

(
1 + d

d

)
[
(1 − θ) − K(θ, d)

]

where

K(θ, d) =

∞∑

l=1

ρlθ(1 − θ)l (17)
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= ρθ(1− θ)

∞∑

m=0

[ρ(1− θ)]m

=
ρθ(1− θ)

1 − ρ(1− θ)

=
θ(1 − θ)

d + θ
.

• The posterior distribution of Θ for a customer active for n periods is

g(θ | γ, δ, active for n periods) =
S(n − 1 | θ)g(θ | γ, δ)

S(n− 1 | γ, δ)

=
θγ−1(1− θ)δ+n−2

B(γ, δ + n − 1)
.

• Let us now remove the conditioning on θ. By definition,

E[DRL(d, active for n periods) | γ, δ]

=

∫ 1

0

E[DRL(d, active for n periods) | θ] g(θ | γ, δ, active for n periods)dθ

=

(
1 + d

d

)[(
δ + n − 1

γ + δ + n − 1

)

− K(γ, δ, d, n)

]

, (18)

where

K(γ, δ, d, n) =

∫ 1

0

K(θ, d) g(θ | γ, δ, active for n periods)dθ

=

∫ 1

0

θ(1 − θ)

d + θ

θγ−1(1− θ)δ+n−2

B(γ, δ + n − 1)
dθ

=
1

B(γ, δ + n − 1)

∫ 1

0

θγ(1− θ)δ+n−1(d + θ)−1dθ

=
1

B(γ, δ + n − 1)

∫ 1

0

sδ+n−1(1− s)γ(1 + d − s)−1ds

=
1

B(γ, δ + n − 1)(1 + d)

∫ 1

0

sδ+n−1(1 − s)γ(1 − 1
1+d

s)−1ds

=
1

1 + d

B(γ + 1, δ + n)

B(γ, δ + n − 1)
2F1

(
1, δ + n; γ + δ + n + 1; 1

1+d

)

=

(
1

1 + d

)
γ(δ + n − 1)

(γ + δ + n − 1)(γ + δ + n)

× 2F1

(
1, δ + n; γ + δ + n + 1; 1

1+d

)
. (19)
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• We now turn to var[DRL(d, active for n periods) | γ, δ], the variance of DRL

for a customer active for n periods. As for DL, we first derive an expression

for E[DRL(d, active for n periods)2 | γ, δ, ]:

E[DRL(d, active for n periods)2 |θ]

=

∞∑

l=0

{
DRL(d, active for n periods |L = l)2

× P (RL = l | θ, active for n periods)
}

=
1

(1− ρ)2

∞∑

l=1

(1− ρl)2θ(1 − θ)l

=
1

(1− ρ)2

∞∑

n=1

(1− 2ρl + ρ2l)θ(1− θ)l

which, letting ρ′ = ρ2 ⇔ d′ = d(d+2), and recalling our definition of K(θ, d),
(17),

=
(1− θ) − 2K(θ, d) + K(θ, d′)

(1− ρ)2

=

(
1 + d

d

)2
[
(1 − θ) − 2K(θ, d) + K(θ, d′)

]
.

We remove the conditioning on θ using the results given in (18) and (19).

• We therefore have

E[DRL(d, active for n periods) | γ, δ]

=

(
1 + d

d

)[(
δ + n − 1

γ + δ + n − 1

)

− K(γ, δ, d, n)

]

, (20)

E[DRL(d, active for n periods)2 | γ, δ]

=

(
1 + d

d

)2[(
δ + n − 1

γ + δ + n − 1

)

− 2K(γ, δ, d, n)+ K(γ, δ, d′, n)

]

, (21)

var[DRL(d, active for n periods) | γ, δ]

= E[DRL(d, active for n periods)2 | γ, δ]

− E[DRL(d, active for n periods) | γ, δ]2 , (22)

where d′ = d(d + 2) and

K(γ, δ, d, n) =

(
1

1 + d

)
γ(δ + n − 1)

(γ + δ + n − 1)(γ + δ + n)

× 2F1

(
1, δ + n; γ + δ + n + 1; 1

1+d

)
.

11



• We present an example of these calculations in Appendix A.

• Drawing on the derivation of our expressions for the mean and variance of LV ,

it follows that

E[RLV (d, active for n periods) | γ, δ, ξ]

= E(W | ξ)E[DRL(d, active for n periods) | γ, δ] , (23)

E[RLV (d, active for n periods)2 | γ, δ, ξ]

=
{
E(W 2 | ξ)− E[E(W | η)2 | ξ]

}
E[DRL(d′, active for n periods) | γ, δ]

+ E[E(W | η)2 | ξ]E[DRL(d, active for n periods)2 | γ, δ] , (24)

var[RLV (d, active for n periods) | γ, δ, ξ]

= E[RLV (d, active for n periods)2 | γ, δ, ξ]

− E[RLV (d, active for n periods) | γ, δ, ξ]2 . (25)
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Appendix A

In this appendix we present an illustrative example of computing the mean and

variance of DL and DRL. Our BG parameter estimates are those obtained in Fader
and Hardie (2014),A1 which we use in Fader and Hardie (2017). We assume a 10%

discount rate.
We perform our calculations in MATLAB and use the h2f1 function developed

in Fader et al. (2005) to evaluate the Gaussian hypergeometric function. Executing
the following script

gamma = 0.760;

delta = 1.286;

d = 0.1;

j1 = (1/(1+d))*(gamma/(gamma+delta))...

*h2f1(1,delta,gamma+delta+1,1/(1+d));

EDL = (1+d)/d*(1-j1)

d1 = d*(d+2);

j2 = (1/(1+d1))*(gamma/(gamma+delta))...

*h2f1(1,delta,gamma+delta+1,1/(1+d1));

EDL2 = ((1+d)/d)^2*(1-2*j1+j2);

VDL = EDL2 - EDL^2

gives us

EDL = 3.6221

VDL = 10.5667

In the spreadsheet mean and variance of DL and DRL.xlsx, we compute the

distribution of DL. The resulting estimates of the E[DL] and var[DL] equal those
computed above.

To illustrate the equivalent discounted residual lifetime calculations, let us con-
sider an individual who has been a customer for five periods. Executing the following
script

n = 5;

k1 = (1/(1+d))*(gamma*(delta+n-1)/((gamma+delta+n-1)...

*(gamma+delta+n)))...

*h2f1(1,delta+n,gamma+delta+n+1,1/(1+d));

k2 = (1/(1+d1))*(gamma*(delta+n-1)/((gamma+delta+n-1)...

*(gamma+delta+n)))...

*h2f1(1,delta+n,gamma+delta+n+1,1/(1+d1));

EDRL = (1+d)/d*(((delta+n-1)/(gamma+delta+n-1))-k1)

A1These are the NLS estimates based off the retention curve, not the ML estimates.
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EDRL2 = ((1+d)/d)^2*(((delta+n-1)/(gamma+delta+n-1))-2*k1+k2);

VDRL = EDRL2 - EDRL^2

gives us

EDRL = 5.6951

VDRL = 16.3763

which match those calculated from the distribution of DRL (as computed in the

spreadsheet mean and variance of DL and DRL.xlsx).

Appendix B

In order to compute the mean and variance of LV and RLV , we need E(W | ξ),
E(W 2 | ξ), and E[E(W | η)2 | ξ]. Note that these are generic expressions for a per-
period value distribution where the wi are realizations of Wi, which are iid with pdf

f(w | η), and η varies across individuals with distribution g(η | ξ).
Let us consider the specific case where per-period value is characterized by the

gamma-gamma model (Fader and Hardie 2013). In this case, W ∼ gamma(p, ν),
with E(W | p, ν) = p/ν and E(W 2 | p, ν) = p(p + 1)/ν2, and N ∼ gamma(q, γ).B1 It

follows that

E(W | p, q, γ) =

∫ ∞

0

p

ν

γqνq−1e−γν

Γ(q)
dν

=
pγ

q − 1
,

E(W 2 | p, q, γ) =

∫ ∞

0

p(p + 1)

ν2

γqνq−1e−γν

Γ(q)
dν

=
p(p + 1)γ2

(q − 1)(q − 2)
,

E[E(W | ν)2 | p, q, γ]) =

∫ ∞

0

p2

ν2

γqνq−1e−γν

Γ(q)
dν

=
p2γ2

(q − 1)(q − 2)
.

B1Note the notation clash. This γ parameter is not the same as that in the main text of this note.
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