
A Correlated Pareto/NBD Model

Peter S. Fader

www.petefader.com

Bruce G. S. Hardie†

www.brucehardie.com

January 2015

1 Introduction

Of all the assumptions associated with the Pareto/NBD model, the one

that many researchers have the most problem with is the assumption that
the transaction rate λ and the “death” rate µ vary independently across

customers. This is not nearly as restrictive as it may seem; more formally,
we are assuming independent priors, which does not imply independence in

the joint posterior distribution of Λ and M . Nevertheless, there is a belief
that this assumption is overly restrictive.

This note presents an informal description of a “correlated Pareto/NBD”
model as (inelegantly) implemented in MATLAB1 and applied to the CD-
NOW dataset. To accommodate correlation, we replace the Pareto/NBD

assumption that heterogeneity in λ and µ is captured by two independent
gamma distributions with the assumption that the joint distribution of λ

and µ is a bivariate lognormal distribution, also known as the SLL dis-
tribution (Johnson 1949). (Strictly speaking, it is incorrect to call this

model a correlated Pareto/NBD; it would be more correct to call it the
SLL-Exponential/Poisson model.)

We assume that the reader is familiar with the mathematics behind the
Pareto/NBD model (e.g., Fader and Hardie 2005) as well as the mechan-

ics of implementing it in MATLAB (Fader et al. 2005). We also assume
that the reader is familiar with the concepts of the method of maximum
simulated likelihood, the basics of evaluating integrals using Monte Carlo

integration, the use of the Cholesky decomposition of the covariance matrix
when generating draws from a multivariate normal distribution, and so on.

† c© 2015 Peter S. Fader and Bruce G. S. Hardie. This document and the associated
MATLAB files can be found at < http://brucehardie.com/notes/034/>.

1The analysis was undertaken using R2012a (7.14.0.739), 64-bit (win64).

1



2 Parameter Estimation

Given the assumptions of the Pareto/NBD model, the individual-level like-

lihood function is

L(λ, µ | x, tx, T ) =
λxµ

λ + µ
e−(λ+µ)tx +

λx+1

λ + µ
e−(λ+µ)T . (1)

We assume that the joint distribution of Λ and M is bivariate lognormal,

[

ln(λ)

ln(µ)

]

∼ MVN

([

νΛ

νM

]

,

[

σ2
Λ σΛM

σMΛ σ2
M

])

,

and therefore need to evaluate

L(ν, Σ | x, tx, n) =

∫ ∞

0

∫ ∞

0
L(λ, µ | x, tx, n)f(λ, µ | ν, Σ) dλ dµ .

There is no analytic solution to this double integral. We therefore evaluate

it using Monte Carlo simulation; that is, we estimate the model parameters
using the method of maximum simulated likelihood. We do this in the
following manner in MATLAB.2

• The data are read into MATLAB using the following script:

% load_data.m

% Loads the CDNOW data from the spreadsheet cdnow_data.xls

global p1x p2x tx T

tmpdata = xlsread(’d:\cdnow_data.xls’,’Individual-level Data’,’b2:e2358’);

p1x = tmpdata(:,1);

tx = tmpdata(:,2);

T = tmpdata(:,3);

p2x = tmpdata(:,4);

clear tmpdata;

(See Fader et al. (2005) for further details.)

• We generate two vectors of random numbers drawn from a normal dis-
tribution with mean zero and variance one using the following script.

(For the purposes of this analysis, we are using 100,000 draws to eval-
uate the integrals of interest.)

% generate_common_random_numbers.m

global Z

rng(’default’);

Z = randn(100000,2);

2Note that our simulated likelihood routines are very crude and should not be viewed
an example of good practice.

2



• We first consider an uncorrelated model. The following function com-
putes the value of the sample log-likelihood function for a given set of

model parameters (contained in the vector param):

function [f,g]= ll_uncorr(param)

% ll_uncorr.m -- evaluate the log-likelihood function for the

% "correlated Pareto/NBD model" with zero correlation.

global p1x tx T Z

param

% Part A

Nu = param(1:2);

Sigma = diag([param(3:4)]);

Y = Z*sqrt(Sigma);

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

% Part B

lammu = lam + mu;

lik = zeros(length(p1x),1);

for i = 1:length(p1x)

tmp = lam.^(p1x(i))./lammu;

lik(i) = mean(tmp.*(mu.*exp(-lammu*tx(i)) + lam.*exp(-lammu*T(i))));

end

f = -sum(log(lik))

g=[];

The first and third elements of param are the mean and variance of the
normal distribution whose random variates are transformed into values
of λ using the exponential transformation in “Part A”. Similarly, the

second and fourth elements of param are the mean and variance of
the normal distribution whose random variates are transformed into

values of µ.

Now that we have, in this case, 100,000 draws from the lognormal
distributions for λ and µ, “Part B” sees us performing the Monte

Carlo integration: computing (1) for each draw and taking the average
of the resulting quantity. The log of this is the value of the (simulated)

log-likelihood function for the parameter values contained in param.

• We use the fmincon routine (which is part of the Optimization Tool-
box) to find the maximum of the log-likelihood function (or, more

correctly, the minimum of −LL) via the following script:

% estimate_uncorr.m

lb = -10*ones(1,4);

lb(3) = .0001; lb(4)= .0001;

ub = 5*ones(1,4);

initial = .1*ones(1,4);

[ params_uncorr ll_uncorr exitflag_uncorr ] = ....

fmincon(’ll_uncorr’,initial,[],[],[],[],lb,ub)

3



• fmincon terminates at

params_uncorr = -3.5136 -3.5038 1.2905 3.0160

ll_uncorr = 9.5735e+03

These results are discussed below.

• We now run the correlated model. The only change we need to
make to the log-likelihood code concerns the creation of Y given the

two columns of uncorrelated normal random numbers contained in Z.
Rather than directly estimating the covariance matrix of ln(Λ) and

ln(M), we estimate the elements of the Cholesky decomposition of the
covariance matrix.

function [f,g]= ll_corr(param)

% ll_corr.m -- evaluate the log-likelihood function for the

% "correlated Pareto/NBD" model.

global p1x tx T Z

param

% Part A

Nu = param(1:2);

R = [ param(3) param(4); 0 param(5) ];

Y = Z*R;

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

% Part B

lammu = lam + mu;

lik = zeros(length(p1x),1);

for i = 1:length(p1x)

tmp = lam.^(p1x(i))./lammu;

lik(i) = mean(tmp.*(mu.*exp(-lammu*tx(i)) + lam.*exp(-lammu*T(i))));

end

f = -sum(log(lik))

g=[];

• We find the maximum of the log-likelihood function via the following
script:

% estimate_corr.m

lb = -10*ones(1,5);

lb(3) = .0001; lb(5)= .0001;

ub = 5*ones(1,5);

initial = .1*ones(1,5);

[ params_corr ll_corr exitflag_corr ] = ....

fmincon(’ll_corr’,initial,[],[],[],[],lb,ub)

• fmincon terminates at

params_corr = -3.5166 -3.5833 1.1541 0.1307 1.7671

ll_corr = 9.5732e+03

4



• The last three elements of params corr are the elements of the up-
per triangular matrix (R) that is the Cholesky decomposition of the

covariance matrix. Our estimate of Σ is computed as R′R:

R = [ params_corr(3) params_corr(4); 0 params_corr(5) ];

R’*R

These results are discussed below.

With reference to Table 1, we see that relaxing the assumption of inde-

pendence in the heterogeneity distributions for λ and µ does not lead to a
significant reduction in the value of the log-likelihood function. However,

it is interesting to note that replacing the two gamma distributions of the
Pareto/NBD model with independent lognormal distributions does result in

a noticeable improvement in the value of the log-likelihood function.
The moments of the lognormal-based models in the (λ, µ) space are

computed using the standard transformations: For
[

ln(X1), ln(X2)
]′

∼
N (ν, Σ),

E(Xi) = exp
(

νi + 1
2σ2

i

)

,

var(Xi) = exp
(

2νi + σ2
i

){

exp
(

σ2
i

)

− 1
}

, and

corr(X1, X2) =
exp(σij) − 1

√

{

exp
(

σ2
1

)

− 1
}{

exp
(

σ2
2

)

− 1
}

.

We compare these estimates to those associated with the Pareto/NBD model

in the lower part of Table 1.
Given the insignificant difference in fit between the two lognormal-based

models, it is not surprising to see that the associated means and variances

are very similar. It is interesting to note that three of the four estimates are
quite different from those associated with the Pareto/NBD model.

To get a better sense of the estimated heterogeneity distributions, the
following script (which assumes we have the Statistics Toolbox) creates the

associated gamma and uncorrelated lognormal plots, which are given in
Figure 1. (We do not show the correlated lognormal distributions as they

are virtually indistinguishable from the uncorrelated lognormal distributions
and only clutter the plots.)

% create_lam_mu_plots.m

m = cumsum(.0001*ones(1,10000));

%

density_lam_uncorr = pdf(’logn’,m,params_uncorr(1),params_uncorr(3));

density_mu_uncorr = pdf(’logn’,m,params_uncorr(2),params_uncorr(4));

%

r = 0.553;

alpha = 10.578;

5



Pareto/NBD Lognormal heterogeneity
Uncorr Corr

Parameter Estimates

νΛ −3.5136 −3.5166
νM −3.5038 −3.5833

σ2
Λ 1.2905 1.3320

σ2
M 3.0160 3.1397

σΛM - - 0.1509
LL −9,590.0 −9,573.5 −9,573.2

Moments in the (λ, µ) space
E(Λ) 0.0523 0.0568 0.0578
var(Λ) 0.0049 0.0085 0.0093

E(M) 0.0519 0.1359 0.1335
var(M) 0.0045 0.3585 0.3940

corr(Λ, M) - - - - 0.0207

Table 1: Parameter estimates.

s = 0.606;

beta = 11.669;

density_lam_pnbd = alpha^r*m.^(r-1).*exp(-alpha*m)/gamma(r);

density_mu_pnbd = beta^s*m.^(s-1).*exp(-beta*m)/gamma(s);

%

plot(m,density_lam_uncorr,’k-’,m,density_lam_pnbd,’k:’);

axis([0,1,0,25]);

legend(’Uncorr’,’Pareto/NBD’);

print -depsc ’d:\dist_lam.eps’

%

plot(m,density_mu_uncorr,’k-’,m,density_mu_pnbd,’k:’);

axis([0,1,0,25]);

legend(’Uncorr’,’Pareto/NBD’);

print -depsc ’d:\dist_mu.eps’

We see that the lognormal distribution for heterogeneity in µ has a fatter

tail than that of the associated gamma distribution. It is worth noting that
the gamma pdf is monotone decreasing and has a vertical asymptote at zero

when its shape parameter is less than one, as is the case for both of these
gamma distributions. The lognormal can only have an interior mode, which

is located exp(ν − σ2). (This is just visible in the distribution of λ but not
in that of µ due to the scaling of the plot axes.)

3 Assessing In-Sample Fit

To visually assess the fit of these three models, we compute the expected
number of people making 0, 1, . . . , 7+ repeat purchases in the 39-week model

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

 

 

Uncorr

Pareto/NBD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

 

 

Uncorr

Pareto/NBD

λ µ

Figure 1: Comparing the estimated distributions for heterogeneity
in λ and µ.

calibration period for each of the three models and compare them to the

actual frequency distribution.
The first thing we need to compute is P (X(t) = x), the probability of

making x repeat transactions in the interval (0, t]. Conditional on λ and µ,
we have

P (X(t) = x | λ, µ) =
(λt)xe−(λ+µ)t

x!

+
λxµ

(λ + µ)x+1

[

1 − e−(λ+µ)t
x
∑

i=0

[

(λ + µ)t
]i

i!

]

.

For a randomly chosen individual,

P (X(t) = x | ν, Σ) =

∫ ∞

0

∫ ∞

0
P (X(t) = x | λ, µ)f(λ, µ |ν, Σ) dλ dµ .

The following MATLAB script evaluates the integrals for both the uncorre-
lated and correlated models using Monte Carlo simulation. (Note that the

time period over which repeat transactions could have occurred varies across
customers, depending on the day of their first purchase. Someone who made

their first purchase at CDNOW on day s of 1997 had t = 39− s
7 weeks within

which to make repeat purchases in the model calibration period.)

% compute_px.m

start_days = 84;

calib_weeks = 39;

t = calib_weeks - [1:start_days]’/7;

censor_point = 7;

% compute P(X(t)=x) for the uncorrelated model

Nu = params_uncorr(1:2);

Sigma = diag([params_uncorr(3:4)]);

Y = Z*sqrt(Sigma);

7



lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

lammu = lam+mu;

px_uncorr = zeros(start_days,censor_point+1);

for y = 0:censor_point-1

part1 = (lam*t’).^y.*exp(-lammu*t’)/prod(1:y);

part2 = lam.^y.*mu./(lammu.^(y+1))*ones(1,start_days);

part3 = 0;

for j=0:y

part3 = part3 + (lammu*t’).^j/prod(1:j);

end

px_uncorr(:,y+1) = mean(part1 + part2.*(1-exp(-lammu*t’).*part3))’;

end

px_uncorr(:,censor_point+1) = 1 - sum(px_uncorr(:,1:censor_point),2);

% compute P(X(t)=x) for the correlated model

Nu = params_corr(1:2);

R = [ params_corr(3) params_corr(4); 0 params_corr(5) ];

Y = Z*R;

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

lammu = lam+mu;

px_corr = zeros(start_days,censor_point+1);

for y = 0:censor_point-1

part1 = (lam*t’).^y.*exp(-lammu*t’)/prod(1:y);

part2 = lam.^y.*mu./(lammu.^(y+1))*ones(1,start_days);

part3 = 0;

for j=0:y

part3 = part3 + (lammu*t’).^j/prod(1:j);

end

px_corr(:,y+1) = mean(part1 + part2.*(1-exp(-lammu*t’).*part3))’;

end

px_corr(:,censor_point+1) = 1 - sum(px_corr(:,1:censor_point),2);

Let ns be the number of customers who made their first purchase at
CDNOW on day s of 1997. The expected number of people in this cohort

of new customers with x repeat transactions is computed in the following
manner:

E(fx) =

84
∑

s=1

nsP (X(t − s
7 ) = x) , x = 0, 1, 2, . . .

Assuming that the values of P (X(t) = x) for the Pareto/NBD model are
in the matrix px pnbd (computed using the script compute px pnbd.m), the

following script creates a plot of the three sets of expected frequencies along
with the actual distribution of repeat transactions in the model calibration

period:

% create_fit_distribution.m

% determine cohort size by day of trial

ns = zeros(1,start_days);

for i = 1:start_days;

ns(i) = sum((T == (calib_weeks*7-i)/7));

8



end

%

freq_uncorr = ns*px_uncorr;

freq_corr = ns*px_corr;

freq_pnbd = ns*px_pnbd;

freq_act = zeros(1,censor_point+1);

for y = 0:censor_point-1

freq_act(y+1) = length(find(p1x==y));

end;

freq_act(censor_point+1) = length(p1x) - sum(freq_act(1:censor_point));

%

bar([ freq_act’ freq_uncorr’ freq_corr’ freq_pnbd’ ])

legend(’Actual’,’Uncorr’,’Corr’,’Pareto/NBD’);

xlabel(’# Transactions’);

ylabel(’Frequency’);

label = [ ’ 0’; ’ 1’;’ 2’; ’ 3’; ’ 4’; ’ 5’; ’ 6’; ’7+’ ];

set(gca,’xticklabel’,label);

colormap(gray);

print -depsc ’d:\fit_distribution.eps’

The resulting plot is presented in Figure 2. Consistent with the log-

likelihood numbers, we note that the lognormal-based models provide a
better fit to the data than the Pareto/NBD model.

 0  1  2  3  4  5  6 7+
0

500

1000

1500

# Transactions

F
re

q
u

e
n

c
y

 

 

Actual

Uncorr

Corr

Pareto/NBD

Figure 2: Predicted vs. actual frequency of repeat transactions in

the model calibration period.

This visual assessment of relative fit is confirmed by computing the as-
sociated χ2 test statistics:

chisq_uncorr = sum((freq_act-freq_uncorr).^2./freq_uncorr)

chisq_corr = sum((freq_act-freq_corr).^2./freq_corr)

chisq_pnbd = sum((freq_act-freq_pnbd).^2./freq_pnbd)

giving us

9



chisq_uncorr = 2.3287

chisq_corr = 2.6202

chisq_pnbd = 11.9926

4 Assessing Out-of-Sample Aggregate Forecasts

Calibration-period fit is one thing. The big question is whether this improve-

ment in model fit leads to any meaningful improvement in the associated
predictions. One way to assess the performance of the models is to see how

well the model-based predictions of repeat purchasing by the cohort of 2357
customers track the actual number of repeat transactions over time.

The first thing we need to compute is E
[

(X(t)
]

, the expected number
of repeat transactions in the interval (0, t]. Conditional on λ and µ, this is

given by

E
[

X(t) | λ, µ
]

=
λ

µ
−

λ

µ
e−µt . (2)

For a randomly chosen individual,

E
[

X(t) = x | ν, Σ
]

=

∫ ∞

0

∫ ∞

0
E
[

X(t) | λ, µ
]

f(λ, µ | ν, Σ) dλ dµ .

We evaluate the integrals for both the uncorrelated and correlated models
using the following MATLAB script:

% compute_ex.m

EndWk = 78;

EndDay = EndWk*7;

ex_uncorr = zeros(1,EndDay);

ex_corr = zeros(1,EndDay);

% compute E[(X(t)] for the uncorrelated model

Nu = params_uncorr(1:2);

Sigma = diag([params_uncorr(3:4)]);

Y = Z*sqrt(Sigma);

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

for i = 1:EndDay

ex_uncorr(i) = mean((lam./mu).*(1-exp(-mu*i/7)));

end

% compute E[(X(t)] for the correlated model

Nu = params_corr(1:2);

R = [ params_corr(3) params_corr(4); 0 params_corr(5) ];

Y = Z*R;

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

for i = 1:EndDay

ex_corr(i) = mean((lam./mu).*(1-exp(-mu*i/7)));

end

However, we are not interested in the expected number of repeat transac-

tions for a randomly-chosen individual; rather we are interested in tracking

10



(and forecasting) the total number of repeat transactions by the cohort of
customers. In computing this cohort-level number, we need to account for

each individual’s time of first purchase. The total cumulative number of
repeat transactions is computed as follows:

Total Repeat Transactions by t =

84
∑

s=1

δ(t>
s
7)nsE

[

X(t− s
7)
]

,

where δ
(t>

s
7 )

= 1 if t > s
7 , 0 otherwise.

To compute the expected number of total repeat transactions for each

of the 39 “calibration period” weeks and each of the following 39 “forecast
period” weeks, we first compute this quantity for each of the 7 × 78 = 546

days and then extract every 7th number to yield the corresponding weekly
numbers. Assuming that the values of E

[

X(t)
]

for the Pareto/NBD model
are in the vector ex pnbd (computed using the script compute ex pnbd.m),

this is computed via the following script, which also generates the associated
tracking plot.

% create_cumulative_tracking_plot.m

start_days = 84;

calib_weeks = 39;

% determine cohort size by day of trial

ns = zeros(1,start_days);

for i = 1:start_days

ns(i) = sum((T == (calib_weeks*7-i)/7));

end

%

tmpCumSls_uncorr = zeros(start_days,EndDay);

tmpCumSls_corr = zeros(start_days,EndDay);

tmpCumSls_pnbd = zeros(start_days,EndDay);

for i = 1:start_days

tmpCumSls_uncorr(i,:) = [ zeros(1,i) ex_uncorr(1:EndDay-i) ];

tmpCumSls_corr(i,:) = [ zeros(1,i) ex_corr(1:EndDay-i) ];

tmpCumSls_pnbd(i,:) = [ zeros(1,i) ex_pnbd(1:EndDay-i) ];

end

DailySls_uncorr = ns*tmpCumSls_uncorr;

DailySls_corr = ns*tmpCumSls_corr;

DailySls_pnbd = ns*tmpCumSls_pnbd;

% extract weekly numbers

CumSls_uncorr = [];

CumSls_corr = [];

CumSls_pnbd = [];

for i = 1:EndWk

CumSls_uncorr(i) = DailySls_uncorr(i*7);

CumSls_corr(i) = DailySls_corr(i*7);

CumSls_pnbd(i) = DailySls_pnbd(i*7);

end

% load actual cumulative repeat sales data

actual = xlsread(’d:\cdnow_data’,’Cum. Repeat Sales’,’b1:b78’);

% create tracking plot of cumulative repeat sales (pred. vs actual)

11



plot(1:EndWk,actual,’k’, 1:EndWk,CumSls_uncorr,’k-.’, ....

1:EndWk,CumSls_corr,’k:’, [39 39],[0 5000],’k--’, ....

1:EndWk,CumSls_pnbd,’k--’);

axis([0,78,1,5000]);

set(gca,’YTick’,[ 0 1000 2000 3000 4000 5000 ]);

set(gca,’XTick’,[ 0 13 26 39 52 65 78 ]);

xlabel(’Week’); ylabel(’Cum. Rpt Transactions’);

legend(’Actual’,’Uncorr’,’Corr’,’Pareto/NBD’,2);

print -depsc ’d:\cum_tracking.eps’

The resulting plot is presented in Figure 3. We note that the lognormal-

based models appear to be slightly less accurate than the Pareto/NBD in
tracking cumulative repeat purchasing out-of-sample.

0 13 26 39 52 65 78

1000

2000

3000

4000

5000

Week

C
u
m

. 
R

p
t 
T

ra
n
s
a
c
ti
o
n
s

 

 

Actual

Uncorr

Corr

Pareto/NBD

Figure 3: Comparing predicted vs. actual cumulative repeat trans-
actions over time.

This visual assessment of relative tracking performance is confirmed by
computing the out-of-sample MSE:

mse_uncorr = mean((actual(40:78)’-CumSls_uncorr(40:78)).^2)

mse_corr = mean((actual(40:78)’-CumSls_corr(40:78)).^2)

mse_pnbd = mean((actual(40:78)’-CumSls_pnbd(40:78)).^2)

giving us

mse_uncorr = 4.0139e+03

mse_corr = 6.5193e+03

mse_pnbd = 3.0958e+03

5 Conditional Expectations

Perhaps a more important evaluation of predictive performance considers

the quality of the model predictions of future behavior conditional on past

12



behavior. In particular, we are interested in the expected number of transac-
tions in the period (T, T + t] by a customer with purchase history (x, tx, T );

we denote this conditional expectation by E
[

X(T, T + t) | , x, tx, T
]

.
Following the logic associated with the derivation of the Pareto/NBD

conditional expectation, we obtain conditional expectation numbers for the
lognormal-based models by evaluating the following expression:

E
[

X(T,T + t) | ν, Σ; x, tx, T
]

=

∫ ∞

0

∫ ∞

0

{

E
[

X(T, T + t) | λ, µ, Ω > T
]

× P (Ω > T | λ, µ, x, tx, T )

× f(λ, µ | ν, Σ; x, tx, T )
}

dλ dµ .

Noting that E
[

X(T, T + t) | λ, µ, Ω > T
]

is the same as (2), recalling the
basic Pareto/NBD model result,

P (Ω > T | λ, µ, x, tx, T ) =
λxe−(λ+µ)T

L(λ, µ | x, tx, T )
,

and noting that by Bayes’ Theorem

f(λ, µ | ν, Σ; x, tx, T ) =
L(λ, µ | x, tx, T )f(λ, µ | ν, Σ)

L(ν, Σ | x, tx, T )
,

this becomes

E
[

X(T,T + t) | ν, Σ; x, tx, T
]

=
1

L(ν, Σ | x, tx, T )

×

∫ ∞

0

∫ ∞

0

λx+1

µ
e−(λ+µ)T

(

1 − e−µt
)

f(λ, µ | ν, Σ) dλ dµ .

This is evaluated using the following MATLAB scripts for the uncorre-
lated and correlated models:

% compute_ce_uncorr.m

valid_weeks = 39; % period over while the ce is computed

Nu = params_uncorr(1:2);

Sigma = diag([params_uncorr(3:4)]);

Y = Z*sqrt(Sigma);

lam = exp(Nu(1) + Y(:,1));

mu = exp(Nu(2) + Y(:,2));

lammu = lam + mu;

lik = zeros(length(p1x),1);

ce_uncorr = zeros(length(p1x),1);

for i = 1:length(p1x)

part1 = lam.^(p1x(i))./lammu;

part2 = lam.*exp(-lammu*T(i));

lik(i) = mean(part1.*(mu.*exp(-lammu*tx(i)) + part2));

ce_uncorr(i) = mean(lam.^(p1x(i)+1)./mu.*exp(-lammu*T(i)) ....

.*(1-exp(-mu*valid_weeks)))./lik(i);

end

13



% compute_ce_corr.m

valid_weeks = 39; % period over while the ce is computed

Mu = params_corr(1:2);

R = [ params_corr(3) params_corr(4); 0 params_corr(5) ];

Y = Z*R;

lam = exp(Mu(1) + Y(:,1));

mu = exp(Mu(2) + Y(:,2));

lammu = lam + mu;

lik = zeros(length(p1x),1);

ce_corr = zeros(length(p1x),1);

for i = 1:length(p1x)

part1 = lam.^(p1x(i))./lammu;

part2 = lam.*exp(-lammu*T(i));

lik(i) = mean(part1.*(mu.*exp(-lammu*tx(i)) + part2));

ce_corr(i) = mean(lam.^(p1x(i)+1)./mu.*exp(-lammu*T(i)) ....

.*(1-exp(-mu*valid_weeks)))./lik(i);

end

Assuming that the corresponding Pareto/NBD conditional expectations
are in the vector ce pnbd (computed using the script compute ce pnbd.m),

the following script plots the model-based conditional expectations along
with the average of the actual number of transactions that took place in the

39-week forecast period, broken down by the number of calibration-period
repeat purchases.

% create_ce_plot.m

ce_f_act = zeros(max(p1x)+1,1);

ce_f_uncorr = zeros(max(p1x)+1,1);

ce_f_corr = zeros(max(p1x)+1,1);

ce_f_pnbd = zeros(max(p1x)+1,1);

np1x = zeros(max(p1x)+1,1);

for y = unique(p1x)’

isx = find(p1x==y);

np1x(y+1) = length(isx);

ce_f_act(y+1) = sum(p2x(isx))/np1x(y+1);

ce_f_uncorr(y+1) = sum(ce_uncorr(isx))/np1x(y+1);

ce_f_corr(y+1) = sum(ce_corr(isx))/np1x(y+1);

ce_f_pnbd(y+1) = sum(ce_pnbd(isx))/np1x(y+1);

end

% create right-censored version for plot

censor = 7; % right-censor at 7+

denom = sum(np1x(censor+1:length(np1x)));

ce_f_act_cen = ce_f_act(1:censor);

ce_f_act_cen(censor+1) = (np1x(censor+1:length(np1x))’...

*ce_f_act(censor+1:length(np1x)))/denom;

ce_f_uncorr_cen = ce_f_uncorr(1:censor);

ce_f_uncorr_cen(censor+1) = (np1x(censor+1:length(np1x))’...

*ce_f_uncorr(censor+1:length(np1x)))/denom;

ce_f_corr_cen = ce_f_corr(1:censor);

ce_f_corr_cen(censor+1) = (np1x(censor+1:length(np1x))’...

*ce_f_corr(censor+1:length(np1x)))/denom;

ce_f_pnbd_cen = ce_f_pnbd(1:censor);

ce_f_pnbd_cen(censor+1) = (np1x(censor+1:length(np1x))’...

14



*ce_f_pnbd(censor+1:length(np1x)))/denom;

%

plot([0:censor],ce_f_act_cen,’k’,[0:censor],ce_f_uncorr_cen,’kx-.’, ....

[0:censor],ce_f_corr_cen,’k+--’,[0:censor],ce_f_pnbd_cen,’kp:’);

legend(’Actual’,’Uncorr’,’Corr’,’Pareto/NBD’,4);

xlabel(’# Transactions in Weeks 1-39’);

ylabel(’Average # Transactions in Weeks 40-78’);

axis([-.3 7.3 0 7]);

label = [ ’ 0’; ’ 1’; ’ 2’; ’ 3’; ’ 4’; ’ 5’; ’ 6’; ’7+’ ];

set(gca,’xticklabel’,label);

print -depsc ’d:\ce_plot.eps’

With reference to Figure 4, we see that the conditional expectations
associated with the Pareto/NBD are more accurate than those from the

lognormal-based models.

 0  1  2  3  4  5  6 7+
0

1

2

3

4

5

6

7

# Transactions in Weeks 1−39

A
v
e
ra

g
e
 #

 T
ra

n
s
a
c
ti
o
n
s
 i
n
 W

e
e
k
s
 4

0
−

7
8

 

 

Actual

Uncorr

Corr

Pareto/NBD

Figure 4: Predicted vs. actual conditional expectations of repeat

transactions in the validation period as a function of
calibration-period frequency.

6 Discussion

When dwelling on the Pareto/NBD model, some researchers are troubled
by the assumption of independent gamma distributions. In this note, we

have fitted a “correlated Pareto/NBD” model to the CDNOW dataset and
compared the results to those of the Pareto/NBD model. We find that

the lognormal-based models provide a better in-sample fit to the data, but
do not find any significant correlation between the transaction rates (λ)

and “death” rates (µ). The original Pareto/NBD performs better than the
lognormal-based models in the longitudinal out-of-sample analyses, espe-

cially in the conditional expectation analysis. (These results are broadly

15



consistent with the Bayesian analysis of the problem as presented in Abe
(2009).)

In closing, it must be noted that the exact results of such a simulation-
based analysis are sensitive to set of random numbers used to perform the

Monte Carlo integration. Even though we have used a large number of
draws, the results do change if another set of random numbers is used.

However, the qualitative results remain the same: for the CDNOW dataset,
the lognormal-based models provide a better in-sample fit, there is no evi-

dence of correlation, and the Pareto/NBD performs better in out-of-sample
analyses.

References

Abe, Makoto (2009), “"Counting Your Customers" One by One: A Hierar-

chical Bayes Extension to the Pareto/NBD Model,” Marketing Science,
28 (May–June), 541–553.

Fader, Peter S. and Bruce G. S. Hardie (2005), “A Note on Deriving the

Pareto/NBD Model and Related Expressions.” <http://brucehardie.

com/notes/009/>

Fader, Peter S., Bruce G. S. Hardie, and Ka Lok Lee (2005), “A Note on Im-
plementing the Pareto/NBD Model in MATLAB.” <http://brucehardie.

com/notes/008/>

Johnson, N. L. (1949), “Bivariate Distributions Based on Simple Translation
Systems,” Biometrika, 36 (3/4), 297–304.

16


