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1 Introduction

The beta-geometric (BG) distribution is a robust simple model for characterizing

and forecasting the length of a customer’s relationship with a firm in a contractual
setting. Fader and Hardie (2007a), hereafter FH, is a definitive reference, providing
a detailed derivation of the key quantities of interest, as well as step-by-step details

of how to implement the model in Excel. However the statistical concepts and
notation used in that paper can be daunting for those analysts who do not have a

strong statistics background, leading them to ignore the model when it should really
be a basic tool in their analytics toolkit.

With spreadsheet-literate non-statisticians in mind as the target audience, the
objective of this note is to describe the logic of the BG model in a non-technical

manner and show how to implement it in Excel.

2 Motivating Problem

Consider a company with a subscription-based business model that acquired 1000

customers (on annual contracts) at the beginning of Year 1. Table 1 reports the
pattern of renewals by this cohort over the subsequent four years.1 We would like

to predict how many members of this cohort will still be customers of the firm in
Years 6, 7, . . . .

† c©2014 Peter S. Fader and Bruce G. S. Hardie. This document and the associated spreadsheet
(BG intro.xlsx) can be found at <http://brucehardie.com/notes/032/>.

1A cohort is a group of customers acquired at the same time.
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ID Year 1 Year 2 Year 3 Year 4 Year 5

0001 1 1 0 0 0
0002 1 0 0 0 0
0003 1 1 1 0 0

0004 1 1 0 0 0
0005 1 1 1 1 1

...
...

...

0998 1 0 0 0 0
0999 1 1 1 0 0

1000 1 0 0 0 0

1000 631 468 382 326

Table 1: Pattern of year-on-year renewals for the cohort of 1000 customers

acquired at the beginning of Year 1.

3 Notation and Terminology

We note that the proportion of the cohort “surviving” beyond the first renewal
opportunity is 631/1000 = 0.631. Similarly, the proportion of the cohort surviving

beyond of the second renewal opportunity is 468/1000 = 0.468. This notion of
surviving beyond a particular point in time is captured by the survivor function.

More formally, the survivor function S(t) is the probability that a randomly
chosen member of the original cohort of customers survives beyond time t. With

reference to Figure 1, a customer is “born” at t = 0 (the beginning of Year 1)
and therefore, by definition, S(0) = 1. The empirical survivor function (i.e., the

survivor function computed directly from the data) for this cohort is S(1) = 0.631,
S(2) = 0.468, S(3) = 0.382 and S(4) = 0.326.

Year 1 Year 2 Year 3 Year 4 Year 5

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
1000 631 468 382 326

Figure 1: Summary of the cohort’s subscription’s renewal behavior.

We also note that the proportion of Year 1 customers who are customers in

Year 2 is 631/1000 = 0.631. Similarly, the proportion of Year 2 customers who
are customers in Year 3 is 468/631 = 0.742. This is captured by the notion of the

retention rate, denoted by r(t), which is the proportion of customers who survived
beyond t−1 who also survive beyond t. The empirical retention rates for this cohort
are r(1) = 0.631, r(2) = 0.742, r(3) = 0.816 and r(4) = 0.853. Retention rates can

be computed directly from the data (as above) or via the survivor function using
the following formula:
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r(t) =
S(t)

S(t − 1)
, t = 1, 2, 3, . . .

Equivalently, given knowledge of the retention rates, we can compute the survivor
function using the following forward recursion:

S(t) =

{

1 if t = 0

r(t)× S(t− 1) if t = 1, 2, 3, . . .
(1)

4 The Beta-Geometric Model

The beta-geometric model is based on the following “as if” story of customer be-
havior:

i) At the end of each contract period, an individual customer decides whether

or not to renew her contract by tossing a coin: “heads” (H) she renews her
contract, “tails” (T) she cancels it. (Note that we are not assuming that this

is a “fair” coin; that is, we are not assuming that there is a 50% chance of the
coin coming up H when it is tossed.)

ii) For any given individual, the probability of her coin coming up T, Prob(T),
does not change over time.

iii) The probability of a coin coming up T varies across customers.

The third element of this story should be not be controversial; after all, the notion
of people being different (cross-sectional heterogeneity, to use technical terminology)

is central to marketing, as manifest in the fundamental concept of segmentation.
On the other hand, the individual-level coin-flipping story may raise a few eye-

brows. However, the thing to note is that we are not saying that people actually
make their contract renewal decisions on the basis of coin flips. There are a thousand

and one, if not a million and one, different reasons as to why a customer chooses
to end their “relationship” with a firm. Even if the actual process were completely

deterministic, it would be impossible to measure all the variables that determine an
individual’s behavior. We therefore claim ignorance and, from the perspective of an
outside observer, view contract renewal as a chance (random) occurrence. The image

of customers flipping coins is an “as if” story, and the fundamental question will be
whether this so-called data-generating process captures (and, more fundamentally,

predicts) the patterns of behavior we observe in the data.
Finally, the second element of this story may seem puzzling given that we typi-

cally observe increasing retention rates when we track the “survival” of a cohort of
customers over time (as seen above). We will discuss this at a later stage.
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In order for this verbal story of customer behavior to be of any use to the analyst
wishing to generate estimates of survival beyond Year 5 for the data in Table 1, we

need to translate it into the language of mathematics and then into Excel.
As we learn in many introductory probability courses, the first two elements

of our story are equivalent to saying that the duration of an individual customer’s

relationship with the firm is characterized by the geometric distribution (i.e., the
number of coin tosses before the coin comes up tails for the first time).

For anyone with a marketing background, it would appear that the simplest way
of operationalizing the third element of our story of customer behavior is to assume

the existence of two (or three, four, five, . . . ) segments of customers, where the mem-
bers of each segment all carry the same type of coin (i.e., with the same probability

of coming up T) but the coins differ among segments. While intuitively appealing,
such an approach does constrain each individual’s probability of churning at the end

of each contract period to one of a small number of specific values (i.e., those asso-
ciated with each discrete segment). It turns out that a more parsimonious approach
to capturing consumer heterogeneity is to assume that each individual’s probability

can take on any one of an infinite number of possible values between 0 and 1; this
is achieved by assuming that variability in these probabilities across customers is

captured by a continuous probability distribution. Whenever statisticians need a
probability distribution to characterize something that can vary between between 0

and 1, they naturally turn to the beta distribution; they do so because it is both flex-
ible (i.e., it can capture a lot of different patterns of heterogeneity) and easy to work

with when performing various mathematical calculations. We follow this practice
and operationalize the third element of our story by assuming that heterogeneity in

Prob(T) is captured by a beta distribution.
Before going any further, let us briefly talk about the beta distribution. Going

back to our introductory probability and statistics courses, discussions of the key

parameters of any probability distribution focus on its mean and variance. In the
case of the beta distribution, we will talk about γ and δ (gamma and delta for those

unfamiliar with the Greek alphabet)2, which are related to the mean and variance
in the following manner:

mean:
γ

γ + δ

variance:
γδ

(γ + δ)2(γ + δ + 1)

Why do statisticians “parameterize” the beta distribution in terms of γ and δ and
not the mean and variance? First, it makes the math easier. Second γ and δ actually

give us a better sense of the nature of the heterogeneity we are trying to capture
(i.e., how Prob(T) varies across people). (See Appendix A for an examination of the

shapes the beta distribution can take on.)

2FH use α and β (alpha and beta) instead of γ and δ.
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Combining these two probability distribution gives us the beta-geometric (BG)
distribution as a model of contract duration in a contractual setting. (We do not

focus on the actual derivation here; the interested reader can find all the details in
FH.) Of particular interest is the following expression for the retention rate under
the BG model:

r(t | γ, δ) =
δ + t − 1

γ + δ + t − 1
, t = 1, 2, 3, . . . (2)

Given (2), we can easily compute the corresponding survivor function, S(t), us-
ing the forward-recursion given in (1). Note that these two quantities are computed

using only the four basic arithmetic operations (i.e., addition, subtraction, multipli-
cation and division):

S(0) = 1 ,

S(1) = S(0)× r(1)

=
δ

γ + δ
,

S(2) = S(1)× r(2)

=
δ

γ + δ
×

δ + 1

γ + δ + 1
,

and so on.

5 Fitting the Model to Data

In order to use the BG model to solve the motivating problem (i.e., generate accurate

estimates of customer survival beyond Year 5), we need to know the numerical values
of γ and δ that are mostly likely to have generated the pattern of renewals observed

in Table 1.
FH used the method of maximum likelihood to arrive at estimates of γ and

δ. While such an approach has some desirable statistical properties, the process
of implementing it is not immediately obvious to the non-statistician. Instead, we
will use a simpler regression-like approach that is much easier to understand and

implement.
The basic approach we take is as follows. The observed retention rates are

r(1) = 0.631, r(2) = 0.742, r(3) = 0.816, and r(4) = 0.853. We will find the values
of γ and δ that make the model-based estimates of r(1), . . . , r(4), as computed using

(2), as “close” as possible to the corresponding observed values.
The Excel worksheet we use to do this is shown in Figure 2 and is constructed

in the following manner.

• We start by entering the observed data. The number of Year 1 customers
(1000) is entered in cell B6, the number for Year 2 (631) is entered in cell B7,

and so on down to 326 in cell B10) for Year 5.
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Figure 2: Screenshot of the Excel worksheet for parameter estimation.

• We enter the values of t = 0, 1, . . . , 4 in cells A6:A10 (corresponding to the
beginning of Years 1–5, as in Figure 1).

• We compute the observed Year 1 retention rate in cell C7 using the formula
=B7/B6, and copy it down to cell C10 to compute the observed retention rates

for the other years.

• In order to enter the expression for r(t) under the BG model without generating
a #DIV/0! error message, we need some “starting values” for γ and δ. The

exact values do not matter (provided they are greater than 0), so we start with
1 for both γ and δ, locating these parameter values in cells B1:B2.

• We compute the model-based r(1) (for the values of γ and δ in cells B1:B2) by
entering =($B$2+A7-1)/($B$1+$B$2+A7-1) in cell D7, and copy this formula

down to cell D10 to give us the model-based retention rates for the other years.

• Our objective is to find that values of γ and δ that make the numbers in cells
D7:D10 as “close” as possible to those in cells C7:C10. A natural way to as-
sess closeness is examining (and ultimately minimizing) the squared difference

between each pair of numbers. This is exactly what happens in an ordinary
linear regression. Thus we seek the parameter values that minimize the sum of

the squared differences between the actual and model-based estimates of the
quantity of interest; these are called the least-squares estimates of the model

parameters. (These differences are called “error” and so we seek to minimize
the sum of squared errors, SSE.)

• We compute the squared error associated with the Year 1 retention-rate num-
bers by entering =(C7-D7)^2 in cell E7. We copy this formula down to cell

E10 to give us the squared error numbers for the other years.

• We compute the sum of squared errors by entering =SUM(E7:E10) in cell B3;
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this is the value of the SSE given the values for the two model parameters in
cells B1:B2. (With starting values of 1 for both parameters, SSE = 3.00E−02.)

Our least-squares estimates of the two model parameters are those that minimize

the value of the SSE function. (Strictly speaking, we are computing the nonlinear
least-squares (NLS) estimates of the model parameters. We use the term nonlinear

because (2) is a nonlinear function of t.) We do this using the Excel add-in Solver,
available on the “Data” tab. The target cell is the value of the SSE, cell B3. We

wish to minimize this by changing cells B1:B2. The constraints we place on the
parameters are that γ and δ be greater than 0. As Solver only offers us a “greater

than or equal to” constraint, we add the constraint that cells B1:B2 are ≥ a small
positive number (e.g., 0.0001)—see Figure 3.

Figure 3: Setting up Solver to find the values of γ and δ that minimize SSE

for the BG model.

Clicking the Solve button, Solver converges to a solution where the minimum

value of the SSE is 1.16E−04, associated with γ = 0.760 and δ = 1.286. These are
the NLS estimates of the model parameters.3 (So as to be sure that we have actually

found the minimum value of SSE, it is good practice to redo the optimization process
using a completely different set of starting values. For example, using starting values

of 0.01 and 0.01 (for which SSE = 8.02E−02), use Solver to find the minimum value
of SSE. Are the corresponding values of the two model parameters equal to those

given above? They should be.)

3While fitting the BG model to these same data using the method of maximum likelihood
yields slightly different parameter estimates (γ = 0.764 and δ = 1.296), the resulting estimates of
the retention rates are effectively the same as those computed using our least-squares estimates
(differing at the fourth decimal place before rounding).
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6 Interpreting the Model Parameters

In fitting this model to the data, we are actually estimating the distribution of the

underlying Prob(T) across the cohort of 1000 customers acquired at the beginning of
Year 1. The distribution associated with parameter values γ = 0.760 and δ = 1.286
is plotted in Figure 4. (See Appendix B for details of how to create this plot.)

0.0 0.2 0.4 0.6 0.8 1.0

Prob(T)

0

20

40

60

80

#
P
eo

p
le

Figure 4: Estimated Distribution of Prob(T)

We see that 63 of the 1000 customers acquired at the beginning of Year 1 are
deemed to have a coin for which Prob(T) is somewhere between 0.00 and 0.02, 43

with a coin for which Prob(T) is somewhere between 0.02 and 0.04, ..., right down
to 5 with a coin for which Prob(T) is somewhere between 0.98 and 1.00.

At the end of the first year, all 1000 customers toss their coins (i.e., decide
whether or not to renew their contracts). The average of Prob(T) across these 1000
customers is 0.760/(0.760+1.286) = 0.371, which implies that 37.1% of the original

1000 cohort members will not renew their subscription at the end of Year 1, while
62.9% will renew. (This number is very close to the 63.1% we observe in the actual

data.)
The distribution of Prob(T) across the 629 survivors is given in Figure 5a. Com-

paring this with Figure 4, we see that most of those customers with a high Prob(T)
did indeed see their coins come up T and so did not renew their contract. However,

most of the customers with a low Prob(T) successfully renewed. At the end of the
second year, all 629 Year 1 renewers toss their coins. The average of Prob(T) across

these customers is 0.249, which implies that 75.1% of them (472) will renew their
subscription for a second time, while the remaining 24.9% will not renew.

The distribution of Prob(T) across the 472 survivors is given in Figure 5b. Com-
paring this with Figure 5a, we once again see that those customers with a high
Prob(T) did indeed see their coins come up T and so did not renew their contract.

8



0.0 0.2 0.4 0.6 0.8 1.0

Prob(T)

0

20

40

60

80

#
P
eo

p
le

0.0 0.2 0.4 0.6 0.8 1.0

Prob(T)

0

20

40

60

80

#
P
eo

p
le

Renewed at the end of Year 1 Renewed at the end of Year 2

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

Prob(T)

0

20

40

60

80

#
P
eo

p
le

0.0 0.2 0.4 0.6 0.8 1.0

Prob(T)

0

20

40

60

80

#
P
eo

p
le

Renewed at the end of Year 3 Renewed at the end of Year 4

(c) (d)

Figure 5: Distribution of Prob(T) amongst surviving customers over time.

We note that while a few customers with a very high Prob(T) made it into the sec-

ond year (Figure 5a), they did not make it into the third year (Figure 5b)— if you
have a coin with Prob(T) = 0.95, the probability of getting HH, which is required

to survive into Year 3, is very small, and we do not see this occurring amongst our
cohort of 1000 customers.

The equivalent distributions for those that renew their subscriptions at the end
of Years 3 and 4 are given in Figure 5c and Figure 5d. We note that, over time, those

customers with coins that have higher Prob(T) are dropping out. This is reflected in
the means the distribution in Figures 5b – 5d, which are, respectively, 0.188, 0.151,
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and 0.126. (This implies retention rates of 0.812, 0.849, and 0.874.) However, some
individuals with lower values for Prob(T) are also disappearing. For example, after

four coin tosses, we have lost about three-quarters of those original customers with
Prob(T) somewhere between 0.28 and 0.30. (This is not surprising; the probability
of seeing HHHH when Prob(T) = 0.3 is (1 − 0.3)4 = 0.24.)

Note that the retention rates are increasing, something implied by (2), even
though the second element of the “as if” story of customer behavior underpinning

the BG model assumes no dynamics at the level of the individual customer. The
observed phenomenon of retention rates increasing over time is simply an artifact of

heterogeneity—those customers with coins that have higher Prob(T) are dropping
out over time, leaving an ever-smaller pool of customers holding coins with lower

Prob(T).

7 Generating Forecasts

Returning to our motivating problem, we have the actual renewal data for this cohort

of customers for another eight years beyond those given in Table 1. This allows us
to assess the predictive performance of the BG model.

We need to compute S(t) out to t = 12 (i.e., surviving into Year 13). In order
to do this, we compute r(t) out to t = 12 using (2) and then use (1) to compute the

survivor function. The Excel worksheet we use to do this is shown in Figure 6 and
is constructed in the following manner.

• Our estimates of γ and δ are entered in cells B1:B2.

• We enter the values of t = 0, 1, . . . , 12 in cells A5:A17.

• We compute the model-based estimate of r(1) by entering =($B$2+A6-1)/

($B$1+$B$2+A6-1) in cell B6, and copy this formula down to cell B17 to com-

pute the retention rates for the next 11 years.

• Given these retention rates, we compute the values of S(t) using the forward-
recursion formula given in (1):

– By definition S(0) = 1, which we enter in cell C5.

– We compute S(1) by entering =B6*C5 in cell C6.

– We copy this formula down to C17.

In Figure 7, we compare the predicted retention rates with those actually ob-

served over both the model calibration period and the longitudinal holdout (forecast)
period. The predicted Year 12 retention rate is 0.942, while the actual proportion

of those Year 12 subscribers who renewed their subscriptions at the end of Year 12
is 0.945.
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Figure 6: Screenshot of the Excel worksheet used to compute the survivor
function.
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Figure 7: Actual vs. model-based estimates of the annual retention rates.

Our prediction of how many members of the original cohort that are still cus-
tomers in any given year is computed by multiplying the BG estimates of S(t)

(column C) by 1000. In Figure 8, we compare these predictions with the actual
numbers over both the model calibration period and the longitudinal holdout (fore-
cast) period. The model predicts that 160 of the original 1000 will still be customers
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in Year 13; the actual number is 173. This is impressive given the forecasting hori-
zon (relative to the length of the model calibration period) and the simplicity of the

model.
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Figure 8: Actual vs. model-based estimates of the number of surviving cus-

tomers.

Some readers may be thinking “Why bother with this “as if” story of customer
behavior? Sure, the model works well, but do we really need this heterogeneous

coin-flipping baggage? Why not just fit some flexible function of time directly to
either the survival data or the retention data and use that to generate the required

forecasts?”
We discourage such thinking for two reasons. First, as documented in FH and

Fader and Hardie (2007b), the BG model is more robust than various flexible func-

tions of time. Second, we actually find that it is easier to explain the logic of the
BG model to the end-user (using the coin-flipping story given above) than it is to

wave one’s hands and talk about fitting flexible (but arbitrary) functions of time to
the data. As this note has hopefully illustrated, it is easy for a spreadsheet-literate

non-statistician to implement the BG model using a simple Excel spreadsheet.
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Appendix A: The Shape of the Beta Distribution

As we see in Figure A1, the shape of the beta distribution depends on the relative
magnitude of γ and δ, and whether they are greater than or less than 1.
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Figure A1: General shapes of the beta distribution as a function of γ and δ.

• When both γ and δ are less than 1 (bottom-left quadrant) we have a “U-

shaped” distribution. In such a setting, this is both a large fraction of the
population holding coins with Prob(T) close to 1 (who will churn at the first

opportunity to do so), and a large fraction of the population holding coins with
Prob(T) close to 0 (who will likely remain as customers for a very long time).

As γ and δ get closer and closer to 0, the distribution becomes more and more
polarized, with no one populating the middle area and everyone piling up at

either 0 or 1.

• When both γ and δ are greater than 1 (top-right quadrant) we have an interior

mode (the exact location of which depends on relative magnitude of γ vis-à-vis
δ). As both γ and δ get larger and larger, there is less and less variability in

Prob(T) across individuals. (Referring back to the expression for the variance
of the beta distribution, the variance gets smaller and smaller.) In the limit, the

distribution becomes a spike located at the mean (i.e., there is no heterogeneity
in Prob(T)).

• When γ is greater than 1 and δ is less than 1 (bottom-right quadrant) we have
a “J-shaped” distribution. As γ gets larger, and δ gets closer to 0, more and

more of the population will pile up towards Prob(T) = 1.
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• When γ is less than 1 and δ is greater than 1 (top-left quadrant) we have a
“reverse-J-shaped” distribution. As δ gets larger, and γ gets closer to 0, more

and more of the population will pile up towards Prob(T) = 0.

• As a technical aside, when both γ and δ equal 1, the distribution is a flat line

between 0 and 1; in other words, the beta distribution collapses to the uniform
distribution.

As such, we can think of γ as trying to push the distribution towards Prob(T) = 1

and δ as trying to push the distribution towards Prob(T) = 0. A third force is
“gravity” pushing down on the middle; when both γ and δ are greater than 1, we

“break through” the force of gravity and have an interior mode.
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Appendix B: Creating Figure 4 in Excel

The beta distribution is what statisticians call a continuous distribution. Rather
than trying to interpret the “raw” plot of the beta distribution (which does not

come naturally to the non-statistician), we find it better to create and present a
discretized plot such as that given in Figure 4.

At the heart of this exercise is the Excel function BETA.DIST, which computes
the probability that Prob(T) is less than or equal to a specific value. We use this

in the Excel worksheet shown in Figure B1 to create Figure 4. This worksheet is
constructed in the following manner.
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Figure B1: Screenshot of the Excel worksheet used to create Figure 4.

• Our estimates of γ and δ are entered in cells B1:B2.

• We want to compute the number of people holding a coin whose Prob(T) falls
in an interval of width 0.02, so we need a column containing 0.00, 0.02, 0.04, . . . ,

0.98, 1.00. First we enter 0 in cell A5. Next we enter =ROUND(A4+0.02,2) in
cell A6 and copy this formula down to cell A55. We label this column x (cell

A4).i

• We now want to compute the probability that the value of Prob(T) for a

randomly chosen individual is less than or equal to x. We compute this in
column B by entering =BETA.DIST(A5,$B$1,$B$2,TRUE) in cell B5 and copying
the formula down to B55. Since the possible values of Prob(T) are bounded

between 0 and 1, it makes sense that the probability of Prob(T) being less
than or equal to 0, P (Prob(T) ≤ 0), is 0 and that the probability of Prob(T)

being less than or equal to 1, P (Prob(T) ≤ 1), is 1.

iIn theory, we should not have to use the ROUND function. However, Excel is not a great envi-
ronment for precise numerical computation and, if we do not use the ROUND function, the value of
cell A55 is not 1 but 1 + 4.44E−16. This results in a #NUM! error in B55 in the next step.
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• With reference to cell B6, we see that P (Prob(T) ≤ 0.02) = 0.0629.

• Looking at cell B7, we see that P (Prob(T) ≤ 0.04) = 0.1062. However we are

not really interested in this; rather, we want to know that probability that
Prob(T) is between 0.02 and 0.04, P (0.02 < Prob(T) ≤ 0.04).

• We recall from the basic rules of probability that P (0.02 < Prob(T) ≤ 0.04) =

P (Prob(T) ≤ 0.04)−P (Prob(T) ≤ 0.02), which in this specific instance equals
0.0433.

• More generally, we compute P (x−0.02 < Prob(T) ≤ x) in column C by entering
=B6-B5 in cell C6 and copying this formula down to cell C55.

• We see that the probability that a randomly chosen member of the cohort has

a coin with Prob(T) between 0.00 and 0.02 is 0.0629. Similarly, the probability
that a randomly chosen member of the cohort has a coin with Prob(T) between
0.02 and 0.04 is 0.0433. And so on.

• Figure 4 reports these probabilities in terms of the expected number of cohort

members holding a coin with Prob(T) lying in the specified interval. We
compute these numbers in column D by entering =ROUND(1000*C6,0) in cell

D6 and copying this formula down to cell D55. (Note that in this case, cells
D6:D55 sum to 999 due to the rounding to 0 decimal places. If the ROUND

function is not used, these cells sum to 1000.)

The plots in Figure 5 are created in a similar manner, albeit with the following
two modifications:

• The distribution of Prob(T) across those individuals who have made n renewals
is captured by a beta distribution with parameters γ and δ + n.ii

• The number of people who have made n renewals (for the cohort whose be-

havior is summarized in Table 1) is 1000× S(n).

(Clearly Figure 4 corresponds to the case of n = 0.) For example, Figure 5a gives

us the distribution of Prob(T) across those members of the cohort that renewed at
the end of Year 1. Here n = 1, so the value of cell B2 is now 2.286 and the formulas

in column D use 629 in place of 1000.

iiThe derivation of this is given in

Fader, Peter S. and Bruce G. S. Hardie (2010), “Customer-Base Valuation in a Contrac-
tual Setting: The Perils of Ignoring Heterogeneity,” Marketing Science, 29 (January–
February), 85–93. <http://brucehardie.com/papers/022/>
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