
Incorporating Time-Invariant Covariates
into the Pareto/NBD and BG/NBD

Models

Peter S. Fader
www.petefader.com

Bruce G. S. Hardie
www.brucehardie.com†

August 2007

1 Introduction

This note documents how to incorporate the effects of time-invariant co-
variates into the Pareto/NBD and BG/NBD models. It is assumed that the
reader is familiar with the derivations of these models, as presented in Fader
and Hardie (2005) and Fader et al. (2005).

Let z1 be the vector of time-invariant covariates that are assumed to
explain some of the cross-sectional heterogeneity in the purchasing process,
and z2 be the vector of time-invariant covariates that are assumed to explain
some of the cross-sectional heterogeneity in the dropout process. (While it
will typically be the case that z1 = z2, this equality is not assumed in these
derivations.) Note that since these covariates are specific to each individual,
both z1 and z2 should have an individual-specific subscript i; this has been
suppressed for notational convenience.

The basic results are as follows:

• For the Pareto/NBD model, we simply replace α and β with

α = α0 exp (−γ ′
1z1)

β = β0 exp (−γ ′
2z2)

where γ1 and γ2 capture the effects of these two vectors of covariates;
r and s remain unchanged.

† c© 2007 Peter S. Fader and Bruce G. S. Hardie. This document can be found at
<http://brucehardie.com/notes/019/>.
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• For the BG/NBD model, we simply replace α, a, and b with

α = α0 exp (−γ ′
1z1)

a = a0 exp (γ ′
2z2)

b = b0 exp (γ ′
3z2)

where γ1, γ2 and γ3 capture the effects of these two vectors of covari-
ates; r remains unchanged.

2 Preliminaries

A popular, easily interpretable method for incorporating the effects of exoge-
nous covariates in event-time models is the proportional hazards approach.
In this framework, the covariates have a multiplicative effect on the hazard
rate. More specifically, let F0(t|θ) be the so-called “baseline” cdf for the
distribution of an individual’s interpurchase times, and f0(t|θ) and h0(t|θ)
the associated pdf and hazard rate function. The most common formulation
of the proportional hazards specification states that

h(t|θ, γ,zi) = h0(t|θ) exp(γ ′z)

where z denotes the vector of time-invariant covariates and γ denotes the
effects of these covariates. (Note that z must not include an intercept term.)

When the baseline is distributed exponential with rate parameter θ,

h(t|θ, γ,z) = θ exp(γ ′z) .

It follows from the definition of the hazard rate function,

h(t) =
f(t)

1 − F (t)

that, since F (0) = 0,

F (t) = 1 − exp
(

−
∫ t

0
h(u)du

)
.

Therefore,

F (t|θ, γ,z) = 1 − e−θ exp(γ′z)t

and

f(t|θ, γ,z) = θ exp(γ ′z)e−θ exp(γ′z)t .
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3 The Case of the Pareto/NBD Model

The Pareto/NBD model is based on the following assumptions:

i. Customers go through two stages in their “lifetime” with a specific
firm: they are “alive” for some period of time, then become perma-
nently inactive.

ii. While alive, the number of transactions made by a customer follows a
Poisson process with transaction rate λ. This is equivalent to assuming
that the time between transactions is distributed exponential with
transaction rate λ,

f(tj − tj−1 | λ) = λe−λ(tj−tj−1) , tj > tj−1 > 0 ,

where tj is the time of the jth purchase.

iii. Heterogeneity in transaction rates across customers follows a gamma
distribution with shape parameter r and scale parameter α:

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
.

iv. A customer’s unobserved “lifetime” of length ω (after which he is
viewed as being inactive) is exponentially distributed with dropout
rate μ:

f(ω | μ) = μe−μω .

(Note: Previous discussions of the Pareto/NBD have used τ to de-
note the time at which the customer becomes inactive. Because of
notational conflicts, we now use ω to denote this quantity.)

v. Heterogeneity in dropout rates across customers follows a gamma dis-
tribution with shape parameter s and scale parameter β.

g(μ | s, β) =
βsμs−1e−μβ

Γ(s)
.

vi. The transaction rate λ and the dropout rate μ vary independently
across customers.

We now assume that interpurchase times are distributed according to
the with-covariates exponential distribution

f(tj − tj−1|λ0,γ1,z1) = λ0 exp(γ ′
1z1)e−λ0 exp(γ′

1z1)(tj−tj−1) and

F (tj − tj−1|λ0,γ1,z1) = 1 − e−λ0 exp(γ′
1z1)(tj−tj−1) ,
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with the unobserved heterogeneity in λ0 captured by a gamma distribution
with shape parameter r and scale parameter α0:

g(λ0 | r, α0) =
αr

0λ
r−1
0 e−λ0α0

Γ(r)
.

We also assume that lifetimes are distributed according to the with-
covariates exponential distribution

f(ω|μ0,γ2,z2) = μ0 exp(γ ′
2z2)e−μ0 exp(γ′

2z2)ω and

F (ω|μ0,γ2,z2) = 1 − e−μ0 exp(γ′
2z2)ω ,

with the unobserved heterogeneity in μ0 captured by a gamma distribution
with shape parameter s and scale parameter β0:

g(μ0 | s, β0) =
βs

0μ
s−1
0 e−μ0β0

Γ(s)
.

Following the logic of the derivation presented in Fader and Hardie
(2005), it follows that

L(λ0,γ1 | z1, t1, . . . , tx,T, ω > T ) = λx
0 exp(γ ′

1z1)xe−λ0 exp(γ′
1z1)T

and

L(λ0,γ1 | z1, t1, . . . , tx,T, inactive at ω ∈ (tx, T ])

= λx
0 exp(γ ′

1z1)xe−λ0 exp(γ′
1z1)ω .

Removing the conditioning on ω yields the following expression for the
individual-level likelihood function:

L(λ0, μ0,γ1,γ2 | z1,z2, x, tx, T )
= L(λ0,γ1 | z1, x, T, ω > T )P (ω > T | μ0,γ2,z2)

+
∫ T

tx

{
L(λ0,γ1 | z1, x, tx, T, inactive at ω ∈ (tx, T ])

× f(ω | μ0,γ2,z2)
}

dω

=
λx

0 exp(γ ′
1z1)xμ0 exp(γ ′

2z2)
λ0 exp(γ ′

1z1) + μ0 exp(γ ′
2z2)

e−(λ0 exp(γ′
1z1)+μ0 exp(γ′

2z2))tx

+
λx+1

0 exp(γ ′
1z1)x+1

λ0 exp(γ ′
1z1) + μ0 exp(γ ′

2z2)
e−(λ0 exp(γ′

1z1)+μ0 exp(γ′
2z2))T . (1)

We remove the conditioning on unobserved latent variables λ0 and μ0 by
taking the expectation of (1) over the distributions of λ0 and μ0. To facilitate
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this calculation, we perform the change of variables λ = λ0 exp(γ ′
1z1) and

μ = μ0 exp(γ ′
2z2), which implies

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
, where α = α0 exp(−γ ′

1z1) , and

g(μ | s, β) =
βsμs−1e−μβ

Γ(s)
, where β = β0 exp(−γ ′

2z2) .

Note the addition of the addition of minus signs in the exponential
terms as we go from multipliers of λ0, μ0 to multipliers of α0, β0

This gives us

L(r, α0,s, β0,γ1,γ2 | z1,z2, x, tx, T )

=
∫ ∞

0

∫ ∞

0

{(
λxμ

λ + μ
e−(λ+μ)tx +

λx+1

λ + μ
e−(λ+μ)T

)

× g(λ | r, α)g(μ | s, β)
}

dλdμ .

We know from Fader and Hardie (2005) that the solution to this is

L(r, α0,s, β0,γ1,γ2 | z1,z2, x, tx, T )

=
Γ(r + x)αrβs

Γ(r)

{ (
s

r + s + x

)
A1 +

(
r + x

r + s + x

)
A2

}
(2)

where

A1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2F1
(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)
(α + tx)r+s+x

if α ≥ β

2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)
(β + tx)r+s+x

if α ≤ β

(3)

and

A2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2F1
(
r + s + x, s; r + s + x + 1; α−β

α+T

)
(α + T )r+s+x

if α ≥ β

2F1
(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
(β + T )r+s+x

if α ≤ β

(4)

In other words, the likelihood function for the time-invariant-covariates
version of the Pareto/NBD model is the likelihood function associated with
the basic model where α and β are replaced by α = α0 exp(−γ ′

1z1) and
β = β0 exp(−γ ′

2z2); r and s remain unchanged.
Suppose we have transaction data for a sample of N customers, where

customer i made xi purchases in the period (0, Ti] (with the last trans-
action occurring at txi), and covariate vectors z1i and z2i. The sample
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log-likelihood function is given by

LL(r, α0, s, β0,γ1,γ2) =
N∑

i=1

ln
[
L(r, α0, s, β0,γ1,γ2 | z1i,z2i, xi, txi , Ti)

]
.

In numerically evaluating this function, we note that the α ≥ / ≤ β
condition associated with (2)–(4) must now be checked for each i. For any
given α0, β0, it may be the case that α > β for person i while α < β for
person j because of the values of z1i,z2i and z1j ,z2j (and γ1,γ2).

For all related expressions (e.g., E[X(t)], E(Y (t) | x, tx, T )), it is easy to
show that we simply replace α and β with α = α0 exp(−γ ′

1z1) and β =
β0 exp(−γ ′

2z2) to arrive at their with-time-invariant-covariates equivalents.

4 The Case of the BG/NBD Model

The BG/NBD model is based on the following assumptions (the first three
of which are identical to the corresponding Pareto/NBD assumptions):

i. Customers go through two stages in their “lifetime” with a specific
firm: they are “alive” for some period of time, then become perma-
nently inactive.

ii. While alive, the number of transactions made by a customer follows a
Poisson process with transaction rate λ. This is equivalent to assuming
that the time between transactions is distributed exponential with
transaction rate λ,

f(tj − tj−1 | λ) = λe−λ(tj−tj−1) , tj > tj−1 > 0 ,

where tj is the time of the jth purchase.

iii. Heterogeneity in transaction rates across customers follows a gamma
distribution with shape parameter r and scale parameter α:

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
.

iv. After any transaction, a customer becomes inactive with probability p.
Therefore the point at which the customer “drops out” is distributed
across transactions according to a (shifted) geometric distribution with
pmf

P (inactive immediately after jth transaction)

= p(1 − p)j−1 , j = 1, 2, 3, . . . .
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v. Heterogeneity in dropout probabilities follows a beta distribution with
parameters a and b:

f(p | a, b) =
pa−1(1 − p)b−1

B(a, b)
, 0 ≤ p ≤ 1 .

vi. The transaction rate λ and the dropout probability p vary indepen-
dently across customers.

We now assume that interpurchase times are distributed according to
the with-covariates exponential distribution

f(tj − tj−1|λ0,γ1,z1) = λ0 exp(γ ′
1z1)e−λ0 exp(γ′

1z1)(tj−tj−1)

and that the unobserved heterogeneity in λ0 is distributed gamma with
shape parameter r and scale parameter α0:

g(λ0 | r, α0) =
αr

0λ
r−1
0 e−λ0α0

Γ(r)
.

Following the logic of the derivation presented in Fader et al. (2005),

L(λ0, p,γ1 | z1, x, tx, T ) = (1 − p)xλx
0 exp(γ ′

1z1)xe−λ0 exp(γ′
1z1)T

+ δx>0p(1 − p)x−1λx
0 exp(γ ′

1z1)xe−λ0 exp(γ′
1z1)tx .

Taking the expectation of this over the distribution of λ0 gives us

L(r, α0, p,γ1 | z1, x, tx, T )

= (1 − p)x Γ(r + x)αr
0 exp(γ ′

1z1)x

Γ(r)(α0 + exp(γ ′
1z1)T )r+x

+ δx>0p(1 − p)x−1 Γ(r + x)αr
0 exp(γ ′

1z1)x

Γ(r)(α0 + exp(γ ′
1z1)tx)r+x

= (1 − p)x Γ(r + x)[α0 exp(−γ ′
1z1)]r

Γ(r)(α0 exp(−γ ′
1z1) + T )r+x

+ δx>0p(1 − p)x−1 Γ(r + x)[α0 exp(−γ ′
1z1)]r

Γ(r)(α0 exp(−γ ′
1z1) + tx)r+x

. (5)

Note that we have yet to include the effects of z2, the vector of time-
invariant covariates that are assumed to explain some of the cross-sectional
heterogeneity in the dropout process. It is not possible to include the effects
of covariates into p and then allow for unobserved heterogeneity using the
beta distribution.

Using the logic of the beta-logistic model (Heckman and Willis 1977, Rao
and Steckel 1995), we incorporate the effects of time-invariant covariates
on the dropout process via the parameters of the beta mixing distribution
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by making a and b functions of z2. That is, we assume that heterogene-
ity in the dropout probabilities follows a beta distribution with parameters
a0 exp (γ ′

2z2) and b0 exp (γ ′
3z2):

f(p | a0, b0, γ2, γ3; z2) =
pa0 exp (γ′

2z2)−1(1 − p)b0 exp (γ′
3z2)−1

B(a0 exp (γ ′
2z2), b0 exp (γ ′

3z2))
.

Taking the expectation of (5) over this distribution of p gives us

L(r, α0, a0, b0,γ1,γ2,γ3 | z1,z2, x, tx, T )

=
{

B(a0 exp (γ ′
2z2), b0 exp (γ ′

3z2) + x)
B(a0 exp (γ ′

2z2), b0 exp (γ ′
3z2))

× Γ(r + x)[α0 exp(−γ ′
1z1)]r

Γ(r)(α0 exp(−γ ′
1z1) + T )r+x

}

+ δx>0

{
B(a0 exp (γ ′

2z2) + 1, b0 exp (γ ′
3z2) + x − 1)

B(a0 exp (γ ′
2z2), b0 exp (γ ′

3z2))

× Γ(r + x)[α0 exp(−γ ′
1z1)]r

Γ(r)(α0 exp(−γ ′
1z1) + tx)r+x

}

In other words, the likelihood function for the time-invariant-covariates
version of the BG/NBD model is the likelihood function associated with
the basic model where α, a, and b are replaced by α = α0 exp (−γ ′

1z1),
a = a0 exp (γ ′

2z2), and b = b0 exp (γ ′
3z2); r remains unchanged.1

For all related expressions (e.g., E[X(t)], E(Y (t) | x, tx, T )), it is easy to
show that we simply replace α, a, and b with α = α0 exp (−γ ′

1z1), a =
a0 exp (γ ′

2z2), and b = b0 exp (γ ′
3z2) to arrive at their with-time-invariant-

covariates equivalents.

1We note that the BG/NBD has 50% more covariate parameters than the Pareto/NBD.
While this difference could be removed by making only a a function of covariates (i.e., set
γ3 to 0), doing so would constrain the way in which the covariates could influence the
shape (e.g., variance) of the beta distribution. Furthermore, it would be inconsistent with
the basic beta-logistic formulation.
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