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1 Introduction

Fader and Hardie (2007) introduce the shifted-beta-geometric (sBG) distri-
bution as a model of customer contract duration in discrete-time contractual
settings, and show how the model parameters can be estimated using data
from a single cohort of customers.

In many situations, we will have data from more than one cohort of
customers. When these cohorts are defined by the time of acquisition, we
end up with a data structure of the form given in Table 1, where n;; is the
number of customers acquired in period i (“cohort ¢ customers”), n;; is the
number of cohort i customers still active in period j (j > i), and n; is the
total number of active customers in period j.

Cohort Calendar Time —
1 niy ni2 M3 ... Nag
2 n92  N23 ... Nor
3 n3s ... MN3r
I niy
ni nao ns e nr

Table 1: Structure of Multi-Cohort Data

Looking at the first cohort, we see that the firm acquired nq; customers in
the first period; n1o were active in the second period, which means ni; —nl12
customers did not renew their contract at the end of period one. And so so.

1© 2007 Peter S. Fader and Bruce G.S. Hardie. This note and the associated Excel
workbook can be found at <http://brucehardie.com/notes/017/>.



We could assume that each cohort is governed by its own process and
fit separate sBG models for cohorts 1 to I — 2. (We do not have enough
cohort-specific data to be able to estimate separate models for the last two
cohorts.) However the problem with this is that every new cohort has one
less period of information than its temporal predecessor, which may result in
less confidence in the model parameter estimates for the cohorts with fewer
data points.

Therefore the natural starting point in such a situation is to pool the
cohorts, assuming that each cohort is the realization of a common underlying
contract duration process, and to estimate one set of parameters using all
the data. When we have a dataset of the form given in Table 1, it is easy
to compute the maximum likelihood estimates the two model parameters,
even using Microsoft Excel —see Section 2.

In many settings, however, we do not have the full information matrix;
we may only have subsets of the data, as illustrated in Table 2. In Section 3
we show how to estimate the two model parameters when faced with such
limited information, illustrating how to do this in Excel.

Before discussing model estimation, let us briefly review the shifted-beta-
geometric (sBG) distribution. Its probability mass function and survivor
function are

Bla+1,6+t—1)

P(T=t[a,f) = Z o =2
S(t|a,5)zw, t=1,2,...

It is not actually necessary for us evaluate beta functions in order to
compute these quantities. The sBG probabilities can be computed using
the following forward-recursion formula from P(T = 1):
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Once we have the P(T = t), we can compute the survivor function using
the following expression:
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Case 1

Cohort Calendar Time —
1 ni nir
2 n22 nas
3 n3s n3r
1 nry
Case 2
Cohort Calendar Time —
1 nii
2 noo
3 nsas
1 nrr
ni nao ns e nr
Case 3
Cohort Calendar Time —
1 niy
2 nay
3 n3y
I nry
ni no ns ..o ng
Case 4
Cohort Calendar Time —
1 nir—1 Nis
2 N2r—1 N2J
3 n3r—1  N3J1
I nir

Table 2: Limited Information Data Structures



2 Parameter Estimation with Full Information

Given the data presented in Table 1, the corresponding sample log-likelihood
function is
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+n;rln [S(I—z’|a,ﬁ)]}, (3)

the maximum of which can be found using standard numerical optimization
methods.

It is a simple exercise to “code up” (3) in Excel. To illustrate this, we
use the data presented in the Raw Data worksheet in the Excel workbook
multi-cohort_sBG_estimation.x1ls. This gives five years of customer data
(I = 5) for a hypothetical setting where 10,000 customers were acquired
each year.

Consider the worksheet Full Information:

e Given the parameter values located in cells B9:B10, we compute P(T =
t) for t = 1,...,4 in cells B14:E14 using the forward recursion given
in (1). We then compute S(T") for t =1,...,4 in cells B15:E15 using

(2).

e We compute the values of n;; — n;(;41), the number of customers not
renewing their contracts each year, in cells B17:E20. We enter the
corresponding values of n;; in cells F17:F20.

e We enter the corresponding values of P(T' = j — i+ 1|, ) in cells
B22:E25, referring back to the appropriate entries in cells B14:E14.
We enter the corresponding values of S(I —i|«,3) in cells F22:F25,
referring back to the appropriate entries in cells B15:E15.

e We enter in cells B27 :F30 the product of each element of cells B17:F20
and the natural log of the corresponding element of cells B22:F25. The
sum of this block of numbers is located in cell B11 and is the value
of the log-likelihood function for the parameter values located in cells
B9:B10.

We obtain the maximum likelihood estimates of o and 3 by using the Ex-
cel add-in Solver to find the values of o and 3 (cells B9:B10) that maximize
the value of the log-likelihood function (cell B11), subject to the constraint
that cells B9:B10 are > a small positive number (e.g., 0.0001). With starting
values of a = 1, 8 = 1, we find that the full-information maximum likelihood
estimates of the model parameters are & = 3.80 and B = 15.19.



3 Parameter Estimation with Limited Information

We now consider how to estimate the two model parameters when faced with
limited information situations of the form presented in Table 2. (Note that
it is not possible to estimate the two model parameters when we only have
data on the total number of customers for each period (i.e., n1, na, ...,
n.r) or the number of members of each cohort active in the final observed
period (i.e., niy, noy, ..., nyy).)

For Case 1, we can estimate the model parameters using maximum like-
lihood estimation; for Cases 2-4, we will estimate the model parameters
using nonlinear least squares (NLS).

3.1 Casel

The first case corresponds to the setting where we know the initial size of
each cohort, as well as number of cohort members active in period I.

For period i (i =1,...1—1), we know that n; —n;; customers cancelled
their contracts sometime in the first in the first I — i periods, while n;y
customers renewed their contracts I — 4 times. Since the joint probability of
this is
it follows that the sample log-likelihood function is

I-1

LL(c, 8| data) =) {(n —ni)In[1— S —i|a,B)]

=1

—i—nﬂln[S(I—i]a,ﬁ)]}, (4)

the maximum of which can be found using standard numerical optimization
methods.

To illustrate how to “code up” (4) in Excel for the case of our hypothet-
ical dataset, consider the worksheet Limited Information -- Case 1:

e Given the parameter values located in cells B9:B10, we compute P(T =
t) for t = 1,...,4 in cells B14:E14 using the forward recursion given
in (1). We then compute S(T") for t = 1,...,4 in cells B15:E15 using

(2)-

e We compute the values of n;; — n;; in cells D18:D21, and enter the
corresponding values of n;; in cells E18:E21.

e We enter the values of S(I —i|a, 3) in cells E24:E27, referring back
to the appropriate entries in cells B15:E15. We then compute the
corresponding values of 1 — S(I — i |, 3) in cells D24:D27.



e We enter in cells D29:E32 the product of each element of cells D18:E21
and the natural log of the corresponding element of cells D24 :E27. The
sum of this block of numbers is located in cell B11 and is the value
of the log-likelihood function for the parameter values located in cells
B9:B10.

We then use Solver to find the maximum of the log-likelihood function;
with starting values of « = 1,0 =1, we find that this is located at & = 3.79
and 3 = 15.18.

3.2 Case 2

The second case corresponds to the setting where we know the initial size
of each cohort and the total number of customers for each period.
The estimation strategy is as follows:

1. Given n;;, we compute an estimate of n;; using
ni; =niS(j —ila,B) (5)
fori=1,....,0—1,j=i+1,...,1.

2. We then compute an estimate of n; using

7j—1
g =ngi+ Y (6)
i=1

forj=2,...,1.

3. Our goal is to find the values of « and 3 that result in our estimates of
the total number of customers for periods2..., I (na,...,n ) being as
close as possible to the corresponding observed numbers (n.2,...,n.1).
Formally, we seek to minimize the sum of squared errors

I
SSE(a, 5) = ) (n; — ;)" (7)
j=2

J

To illustrate how we can “code up” (5)—(7) in Excel for the case of
our hypothetical dataset, consider the worksheet Limited Information --
Case 2:

e Given the parameter values located in cells B9 :B10, we compute P(T =
t) for t = 1,...,4 in cells B14:E14 using the forward recursion given
in (1). We then compute S(T") for t = 1,...,4 in cells B15:E15 using

2).



e We enter in cells B17:E20 the values of S(j—i|a, 3) fori =1,...,4,j =
1+ 1,...,5, referring back to the appropriate entries in cells B15:E15.

e We enter the observed values of n;; along the diagonal of cells A22: E26.
We then compute the n;; above this diagonal using (5), referring back
to the appropriate element of cells B17: E20.

e We compute the column totals of cells B22:E26 in cells B27 : E27, giving

us na,...,75.

e We then compute the associated squared error numbers, (n; — @)2,
in cells B29:E29. The sum of this block of numbers is located in cell
B11 and is the sum of squared errors for the parameter values located
in cells B9:B10.

We then use Solver to find the values of a and (¢ that minimize SSE;
using starting values of & = 1,3 = 1, we find that they are & = 3.77 and
B = 15.09. (It is important to try out multiple starting values so as to
ensure that the minimum of the function has been reached. For example,
using starting values of & = 2, 5 = 2 (and running Solver twice), we obtain
a smaller SSE at & = 3.80 and § = 15.19.)

3.3 Case 3

The third case corresponds to the setting where we know the total number
of customers for each period and the number of members of each cohort
active in the final observed period.

The estimation strategy is as follows:

1. Given n;;, we compute an estimate of n;; using
ng =niS(I—i|a,3) (8)
fori=1,...,1—1.
2. Given n;;, we compute an estimate of n;; using
nij = nyS(j — il a, ) (9)
fori=1,...,1 —2,j=44+1,...,1 —1.

3. We then compute an estimate of n ; using

J
iy =Y (10)
=1

forj=1,...,1—1.



4. Our goal is to find the values of o and 3 that result in our estimates of
the total number of customers for periods 1..., I —1 (ny,...,1m7-1)
being as close as possible to the corresponding observed numbers
(ni,...,nr-1). Formally, we seek to minimize the sum of squared
errors

~

-1
SSE(a,f) = ) (nj —m;)*. (11)
1
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(Since n1 = ni1, we could instead perform the above calculations for ¢ =
2,...,I—1, use ni1 to compute 17, and add (n1; —n17)? to our expression
for SSE. We feel that these two approaches are equivalent and therefore use
the first approach since it is “cleaner”.)

To illustrate how we can “code up” (8)—(11) in Excel for the case of
our hypothetical dataset, consider the worksheet Limited Information --
Case 3:

e Given the parameter values located in cells B9:B10, we compute P(T =
t) for t = 1,...,4 in cells B14:E14 using the forward recursion given
in (1). We then compute S(T') for t = 1,...,4 in cells B15:E15 using

(2).

e We enter in cells B17:E20 the values of S(j—i|a, 3) fori=1,...,4,j =
14+ 1,...,5, referring back to the appropriate entries in cells B15:E15.

e We enter the observed values of n;; in cells E22:E26.

e We use (8) to compute the n;; along the diagonal of cells A22:D25.
Above this diagonal, we compute the n;; using (9), referring back to
the appropriate elements of cells B17:E20.

e We compute the column totals of cells A22:D25 in cells A27 :D27, giving
us ni,...,74.

e We then compute the associated squared error numbers, (n; — @)2,
in cells A29:D29. The sum of this block of numbers is located in cell
B11 and is the sum of squared errors for the parameter values located
in cells B9:B10.

We then use Solver to find the values of a and ( that minimize SSE;
using starting values of & = 1, = 1 (and running Solver twice), we find
that they are & = 3.80 and B = 15.20. (It is important to try out multiple
starting values so as to ensure that the minimum of the function has been
reached.)



3.4 Case 4

The fourth case corresponds to the setting where we know the number of
members of each cohort active in the last two observed periods.
The estimation strategy is as follows:

1. Given n;;_1, we compute an estimate of n;; using
nii = nig—1S(I —i—1|a,B) (12)
fori=1,...,1—2.
2. We then compute an estimate of n;; using
nir =niS(I —ila,B) (13)

fori=1,...,1 —2, and

i = ni S —i|a, 8) (14)
fore=1-1.

3. Our goal is to find the values of o and 3 that result in our estimates of
the number of cohort 4 customers active in period I (717, ...,n7_1)7)
being as close as possible to the corresponding observed numbers
(nar, - .,n(—1)r). Formally, we seek to minimize the sum of squared
errors

-1
SSE(a, B) = Y (nir — mi1)* . (15)
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To illustrate how we can “code up” (12)—(15) in Excel for the case of
our hypothetical dataset, consider the worksheet Limited Information --
Case 4:

e Given the parameter values located in cells B9:B10, we compute P(T =
t) for t = 1,...,4 in cells B14:E14 using the forward recursion given
in (1). We then compute S(T") for t =1,...,4 in cells B15:E15 using

(2).
e Using (12), we compute the ng (i = 1,2,3) in cells D18:D20, referring

back to the appropriate entries in cells D2:D4 and cells B15:E15. We
then enter the observed value of ng4 in cell D21.

e Using (13) and (14), we then compute n7s, ..., 745 in cells E18:E21.

e We then compute the associated squared error numbers, (n;; — 7;7)?,
in cells F18:F21. The sum of this block of numbers is located in cell
B11 and is the sum of squared errors for the parameter values located
in cells B9:B10.



We then use Solver to find the values of o and § that minimize SSE;
using starting values of & = 1,3 = 1, we find that they are & = 3.79 and
B = 15.17. (As before, it is important to try out multiple starting values so
as to ensure that the minimum of the function has been reached.)

4 Too Little Data?

Let us conclude by considering two data-related issues.

e In order to perform the calculations outlined in Sections 2 and 3 above,
it is necessary to have at least three cohorts worth of data (I = 3).
However, we encourage analysts to make sure that more data are at
their disposal.

e It was claimed at the beginning of Section 3 that it is not possible
to estimate the two model parameters when we only have data on the

total number of customers for each period (i.e., n1, 2, ..., n ) or the
number of members of each cohort active in the final observed period
(i.e., mir, Magy - ooy MIT)-

To get a sense of why is this the case, consider the situation where
we only have the total number of customers for each period (i.e., n 1,
n.a, ..., nr). Clearly we need to arrive at estimates of (n3,...,7.7) in
order to compute the SSE function. Since n.; = nq1, we can compute
n12 = n115(1 | «, 3). However unless we are willing to assume that
n9gy = knqiy, where k is predefined by the analyst, we cannot compute
the required n = ngy + n12. (If we compute ngs = ny — ny2, we
no longer have a value of n5 that can be compared to ns for the
calculation of SSE.) And so on for nss, etc. As it is unacceptable to
make such assumptions about the unobserved n;, we can conclude
that it is not possible to estimate the two model parameters when we
only have data on the total number of customers for each period. (A
similar logic applies in the situation where we only have data on the
number of members of each cohort active in the final observed period.)
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